Katrin Böhning-Gaese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7409277/publications.pdf

Version: 2024-02-01

212 papers 14,786 citations

63 h-index 108 g-index

216 all docs

216 docs citations

216 times ranked 17267 citing authors

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
2	Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science, 2018, 359, 466-469.	6.0	783
3	The Worldwide Variation in Avian Clutch Size across Species and Space. PLoS Biology, 2008, 6, e303.	2.6	353
4	An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7472-7477.	3.3	335
5	Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 2019, 568, 88-92.	13.7	313
6	Specialization of Mutualistic Interaction Networks Decreases toward Tropical Latitudes. Current Biology, 2012, 22, 1925-1931.	1.8	290
7	AVONET: morphological, ecological and geographical data for all birds. Ecology Letters, 2022, 25, 581-597.	3.0	280
8	Coefficient shifts in geographical ecology: an empirical evaluation of spatial and nonâ€spatial regression. Ecography, 2009, 32, 193-204.	2.1	231
9	Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nature Communications, 2016, 7, 13736.	5.8	229
10	Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141097.	1.2	217
11	Metaâ€Analysis of the Effects of Human Disturbance on Seed Dispersal by Animals. Conservation Biology, 2012, 26, 1072-1081.	2.4	213
12	Pathways linking biodiversity to human health: A conceptual framework. Environment International, 2021, 150, 106420.	4.8	210
13	A comparative analysis of dispersal syndromes in terrestrial and semiâ€ŧerrestrial animals. Ecology Letters, 2014, 17, 1039-1052.	3.0	199
14	Spatial patterns of woody plant and bird diversity: functional relationships or environmental effects?. Global Ecology and Biogeography, 2008, 17, 327-339.	2.7	197
15	Food plant diversity as broad-scale determinant of avian frugivore richness. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 799-808.	1.2	188
16	Longâ€term declines of European insectivorous bird populations and potential causes. Conservation Biology, 2019, 33, 1120-1130.	2.4	187
17	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq1	1 0,78431 0.8	4 rgBT /Overl
18	Ecological networks are more sensitive to plant than to animal extinction under climate change. Nature Communications, 2016, 7, 13965.	5.8	180

#	Article	IF	CITATIONS
19	The <scp>PREDICTS</scp> database: a global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution, 2014, 4, 4701-4735.	0.8	178
20	Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics. Movement Ecology, $2013,1,6.$	1.3	169
21	Morphology predicts species' functional roles and their degree of specialization in plant–frugivore interactions. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152444.	1.2	164
22	Determinants of avian species richness at different spatial scales. Journal of Biogeography, 1997, 24, 49-60.	1.4	162
23	Morphological traits determine specialization and resource use in plant–hummingbird networks in the neotropics. Ecology, 2014, 95, 3325-3334.	1.5	151
24	Ecological, historical and evolutionary determinants of modularity in weighted seedâ€dispersal networks. Ecology Letters, 2014, 17, 454-463.	3.0	150
25	Specialization and interaction strength in a tropical plant–frugivore network differ among forest strata. Ecology, 2011, 92, 26-36.	1.5	144
26	Food resources and vegetation structure mediate climatic effects on species richness of birds. Global Ecology and Biogeography, 2014, 23, 541-549.	2.7	143
27	Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People and Nature, 2020, 2, 380-394.	1.7	139
28	Functional relationships beyond species richness patterns: trait matching in plant–bird mutualisms across scales. Global Ecology and Biogeography, 2014, 23, 1085-1093.	2.7	129
29	Diversity in time and space: wanted dead and alive. Trends in Ecology and Evolution, 2013, 28, 509-516.	4.2	128
30	A comprehensive analysis of autocorrelation and bias in home range estimation. Ecological Monographs, 2019, 89, e01344.	2.4	127
31	Are Declines in North American Insectivorous Songbirds Due to Causes on the Breeding Range?. Conservation Biology, 1993, 7, 76-86.	2.4	125
32	Range Size: Disentangling Current Traits and Phylogenetic and Biogeographic Factors. American Naturalist, 2006, 167, 555-567.	1.0	125
33	The global distribution of frugivory in birds. Global Ecology and Biogeography, 2009, 18, 150-162.	2.7	125
34	Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes. Ecography, 2014, 37, 1047-1055.	2.1	124
35	Effects of Climate and Land-Use Change on Species Abundance in a Central European Bird Community. Conservation Biology, 2007, 21, 495-503.	2.4	119
36	When, Where, and How Nature Matters for Ecosystem Services: Challenges for the Next Generation of Ecosystem Service Models. BioScience, 2017, 67, 820-833.	2.2	114

#	Article	IF	CITATIONS
37	Consequences of frugivore diversity for seed dispersal, seedling establishment and the spatial pattern of seedlings and trees. Oecologia, 2001, 129, 385-394.	0.9	113
38	Opposed latitudinal patterns of networkâ€derived and dietary specialization in avian plant–frugivore interaction systems. Ecography, 2017, 40, 1395-1401.	2.1	111
39	Trait-Based Assessments of Climate-Change Impacts on Interacting Species. Trends in Ecology and Evolution, 2020, 35, 319-328.	4.2	106
40	Potential Impact of Global Climate Change on Species Richness of Long-Distance Migrants. Conservation Biology, 2003, 17, 577-586.	2.4	104
41	Ecomorphological predictors of natal dispersal distances in birds. Journal of Animal Ecology, 2009, 78, 388-395.	1.3	101
42	Pollination and seed dispersal are the most threatened processes of plant regeneration. Scientific Reports, 2016, 6, 29839.	1.6	98
43	Enhanced seed dispersal of Prunus africana in fragmented and disturbed forests?. Oecologia, 2006, 147, 238-252.	0.9	94
44	Seed-dispersal distributions by trumpeter hornbills in fragmented landscapes. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2257-2264.	1.2	93
45	Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133148.	1.2	93
46	The importance of species diversity for human well-being in Europe. Ecological Economics, 2021, 181, 106917.	2.9	88
47	Species richness of migratory birds is influenced by global climate change. Global Ecology and Biogeography, 2007, 16, 55-64.	2.7	87
48	Plant–frugivore networks are less specialized and more robust at forest–farmland edges than in the interior of a tropical forest. Oikos, 2012, 121, 1553-1566.	1.2	85
49	Experience drives innovation of new migration patterns of whooping cranes in response to global change. Nature Communications, 2016, 7, 12793.	5.8	83
50	Cross-realm assessment of climate change impacts on species \widehat{a}^{TM} abundance trends. Nature Ecology and Evolution, 2017, 1, 67.	3.4	83
51	Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13294-13299.	3.3	82
52	IMPORTANCE OF PRIMARY AND SECONDARY SEED DISPERSAL IN THE MALAGASY TREECOMMIPHORA GUILLAUMINI. Ecology, 1999, 80, 821-832.	1.5	81
53	Global macroecology of bird assemblages in urbanized and semi-natural ecosystems. Global Ecology and Biogeography, 2011, 20, 426-436.	2.7	80
54	Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010. Global Change Biology, 2016, 22, 3948-3959.	4.2	79

#	Article	IF	CITATIONS
55	Bird diversity and seed dispersal along a human land-use gradient: high seed removal in structurally simple farmland. Oecologia, 2010, 162, 965-976.	0.9	73
56	Global variation in thermal physiology of birds and mammals: evidence for phylogenetic niche conservatism only in the tropics. Journal of Biogeography, 2015, 42, 2187-2196.	1.4	73
57	Constraints on dispersal and the evolution of the avifauna of the Northern Hemisphere. Evolutionary Ecology, 1998, 12, 767-783.	0.5	72
58	Effects of Local Disturbance of Tropical Forests on Frugivores and Seed Removal of a Smallâ€Seeded Afrotropical Tree. Conservation Biology, 2008, 22, 318-328.	2.4	71
59	Large frugivorous birds facilitate functional connectivity of fragmented landscapes. Journal of Applied Ecology, 2014, 51, 684-692.	1.9	71
60	Functional structure and specialization in three tropical plant–hummingbird interaction networks across an elevational gradient in Costa Rica. Ecography, 2015, 38, 1119-1128.	2.1	71
61	Morphological trait matching shapes plant–frugivore networks across the Andes. Ecography, 2018, 41, 1910-1919.	2.1	71
62	Attitudes towards returning wolves (Canis lupus) in Germany: Exposure, information sources and trust matter. Biological Conservation, 2019, 234, 202-210.	1.9	70
63	Changes in Species Abundance, Distribution, and Diversity in a Central European Bird Community. Conservation Biology, 1996, 10, 175-187.	2.4	68
64	Woody plants and the prediction of climate-change impacts on bird diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2035-2045.	1.8	68
65	Global patterns of interaction specialization in bird–flower networks. Journal of Biogeography, 2017, 44, 1891-1910.	1.4	68
66	Human Land-Use Practices Lead to Global Long-Term Increases in Photosynthetic Capacity. Remote Sensing, 2014, 6, 5717-5731.	1.8	65
67	Importance of Climate Change for the Ranges, Communities and Conservation of Birds. Advances in Ecological Research, 2004, , 211-236.	1.4	64
68	Conservation value of forest plantations for bird communities in western Kenya. Forest Ecology and Management, 2008, 255, 3885-3892.	1.4	64
69	Fruit size, crop mass, and plant height explain differential fruit choice of primates and birds. Oecologia, 2010, 164, 151-161.	0.9	64
70	Forest Fragmentation and Selective Logging Have Inconsistent Effects on Multiple Animal-Mediated Ecosystem Processes in a Tropical Forest. PLoS ONE, 2011, 6, e27785.	1.1	64
71	PHENOLOGICAL ADAPTATION OF ANT-DISPERSED PLANTS TO SEASONAL VARIATION IN ANT ACTIVITY. Ecology, 2002, 83, 1412-1420.	1.5	63
72	The importance of figs for frugivores in a South African coastal forest. Journal of Tropical Ecology, 2003, 19, 375-386.	0.5	63

#	Article	lF	Citations
73	Human disturbance reduces genetic diversity of an endangered tropical tree, Prunus africana (Rosaceae). Conservation Genetics, 2008, 9, 317-326.	0.8	63
74	Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient. Nature Communications, 2018, 9, 3177.	5.8	63
75	Weak phylogenetic effects on ecological niches of Sylvia warblers. Journal of Evolutionary Biology, 2003, 16, 956-965.	0.8	62
76	High Bird Species Diversity in Structurally Heterogeneous Farmland in Western Kenya. Biotropica, 2012, 44, 801-809.	0.8	62
77	The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514.	2.7	62
78	Towards a more mechanistic understanding of traits and range sizes. Global Ecology and Biogeography, 2013, 22, 233-241.	2.7	61
79	A comparison of morphological and chemical fruit traits between two sites with different frugivore assemblages. Oecologia, 2004, 141, 94-104.	0.9	60
80	Constant properties of plant–frugivore networks despite fluctuations in fruit and bird communities in space and time. Ecology, 2013, 94, 1296-1306.	1.5	60
81	Importance of animal and plant traits for fruit removal and seedling recruitment in a tropical forest. Oikos, 2017, 126, 823-832.	1.2	59
82	Evolution of avian clutch size along latitudinal gradients: do seasonality, nest predation or breeding season length matter?. Journal of Evolutionary Biology, 2010, 23, 888-901.	0.8	57
83	How colorful are fruits? Limited color diversity in fleshy fruits on local and global scales. New Phytologist, 2013, 198, 617-629.	3.5	57
84	Functional and phylogenetic diversity of bird assemblages are filtered by different biotic factors on tropical mountains. Journal of Biogeography, 2019, 46, 291-303.	1.4	56
85	Different foraging preferences of hummingbirds on artificial and natural flowers reveal mechanisms structuring plant–pollinator interactions. Journal of Animal Ecology, 2015, 84, 655-664.	1.3	55
86	Floral color change and the attraction of insect pollinators in lungwort (Pulmonaria collina). Oecologia, 1999, 121, 383-391.	0.9	54
87	Species richness is positively related to mental health – A study for Germany. Landscape and Urban Planning, 2021, 211, 104084.	3.4	54
88	Fragmentation and local disturbance of forests reduce frugivore diversity and fruit removal in Ficus thonningii trees. Basic and Applied Ecology, 2008, 9, 663-672.	1.2	53
89	At a loss for birds: insularity increases asymmetry in seedâ€dispersal networks. Global Ecology and Biogeography, 2014, 23, 385-394.	2.7	52
90	Continentâ€scale global change attribution in European birds ―combining annual and decadal time scales. Global Change Biology, 2016, 22, 530-543.	4.2	51

#	Article	IF	CITATIONS
91	Direct and indirect effects of climate, human disturbance and plant traits on avian functional diversity. Global Ecology and Biogeography, 2017, 26, 963-972.	2.7	50
92	Seed dispersal by ants: are seed preferences influenced by foraging strategies or historical constraints?. Flora: Morphology, Distribution, Functional Ecology of Plants, 2003, 198, 413-420.	0.6	49
93	Biotic interactions and seed deposition rather than abiotic factors determine recruitment at elevational range limits of an alpine tree. Journal of Ecology, 2018, 106, 948-959.	1.9	49
94	Functional importance of avian seed dispersers changes in response to human-induced forest edges in tropical seed-dispersal networks. Oecologia, 2014, 176, 837-848.	0.9	48
95	Avian diversity in a Kenyan agroecosystem: effects of habitat structure and proximity to forest. Journal of Ornithology, 2008, 149, 181-191.	0.5	47
96	What is macroecology?. Biology Letters, 2012, 8, 904-906.	1.0	47
97	Niche availability in space and time: migration in <i>Sylvia</i> warblers. Journal of Biogeography, 2015, 42, 1896-1906.	1.4	47
98	Seasonal fluctuations of resource abundance and avian feeding guilds across forest–farmland boundaries in tropical Africa. Oikos, 2013, 122, 524-532.	1,2	46
99	Seedâ€dispersal networks are more specialized in the Neotropics than in the Afrotropics. Global Ecology and Biogeography, 2019, 28, 248-261.	2.7	45
100	Impact of climate change on migratory birds: community reassembly versus adaptation. Global Ecology and Biogeography, 2008, 17, 38-49.	2.7	42
101	Population trends of birds across the iron curtain: Brain matters. Biological Conservation, 2011, 144, 2524-2533.	1.9	42
102	Biodiversity, scenery and infrastructure: Factors driving wildlife tourism in an African savannah national park. Biological Conservation, 2016, 201, 60-68.	1.9	42
103	Twenty-million-year relationship between mammalian diversity and primary productivity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10908-10913.	3.3	42
104	Functionally specialised birds respond flexibly to seasonal changes in fruit availability. Journal of Animal Ecology, 2017, 86, 800-811.	1.3	42
105	Individualistic responses of bird species to environmental change. Oecologia, 1995, 101, 478-486.	0.9	41
106	Sugar landscapes and pollinatorâ€mediated interactions in plant communities. Ecography, 2017, 40, 1129-1138.	2.1	41
107	Bird assemblages in isolated Ficus trees in Kenyan farmland. Journal of Tropical Ecology, 2006, 22, 723-726.	0.5	39
108	Responses of nectarâ€feeding birds to floral resources at multiple spatial scales. Ecography, 2016, 39, 619-629.	2.1	39

#	Article	lF	Citations
109	Large birds travel farther in homogeneous environments. Global Ecology and Biogeography, 2019, 28, 576-587.	2.7	39
110	Challenges in the conservation of wideâ€ranging nomadic species. Journal of Applied Ecology, 2019, 56, 1916-1926.	1.9	39
111	Non-material contributions of wildlife to human well-being: a systematic review. Environmental Research Letters, 2020, 15, 093005.	2.2	39
112	Range-Wide Latitudinal and Elevational Temperature Gradients for the World's Terrestrial Birds: Implications under Global Climate Change. PLoS ONE, 2014, 9, e98361.	1.1	38
113	Macroecology of habitat choice in long-distance migratory birds. Oecologia, 2003, 137, 296-303.	0.9	37
114	Influence of habitat complexity and landscape configuration on pollination and seed-dispersal interactions of wild cherry trees. Oecologia, 2012, 168, 425-437.	0.9	37
115	Quantification of climatic niches in birds: adding the temporal dimension. Journal of Avian Biology, 2017, 48, 1517-1531.	0.6	37
116	Spatio-temporal variation in bird assemblages is associated with fluctuations in temperature and precipitation along a tropical elevational gradient. PLoS ONE, 2018, 13, e0196179.	1.1	37
117	The influence of thermal tolerances on geographical ranges of endotherms. Global Ecology and Biogeography, 2017, 26, 650-668.	2.7	36
118	Improving the community-temperature index as a climate change indicator. PLoS ONE, 2017, 12, e0184275.	1.1	36
119	Species richness is more important for ecosystem functioning than species turnover along an elevational gradient. Nature Ecology and Evolution, 2021, 5, 1582-1593.	3.4	35
120	Birds protected by national legislation show improved population trends in Eastern Europe. Biological Conservation, 2014, 172, 109-116.	1.9	34
121	Projected impacts of climate change on functional diversity of frugivorous birds along a tropical elevational gradient. Scientific Reports, 2019, 9, 17708.	1.6	34
122	Changes in abundances of forest understorey birds on Africa's highest mountain suggest subtle effects of climate change. Diversity and Distributions, 2016, 22, 288-299.	1.9	33
123	Exotic Guavas are Foci of Forest Regeneration in Kenyan Farmland. Biotropica, 2007, 40, 071001085735001-???.	0.8	32
124	Patterns of drilling predation on gastropods of the family Turritellidae in the Gulf of California. Paleobiology, 1993, 19, 476-486.	1.3	31
125	Rarity in Chilean forest birds: which ecological and lifeâ€history traits matter?. Diversity and Distributions, 2007, 13, 203-212.	1.9	31
126	Short seedâ€dispersal distances and low seedling recruitment in farmland populations of birdâ€dispersed cherry trees. Journal of Ecology, 2012, 100, 1349-1358.	1.9	31

#	Article	lF	CITATIONS
127	Mismatches between supply and demand in wildlife tourism: Insights for assessing cultural ecosystem services. Ecological Indicators, 2017, 78, 282-291.	2.6	31
128	Seed dispersal, braeding system, tree density and the spatial pattern of trees – a simulation approach. Basic and Applied Ecology, 2002, 3, 115-123.	1.2	30
129	Intraâ€generic species richness and dispersal ability interact to determine geographic ranges of birds. Global Ecology and Biogeography, 2013, 22, 223-232.	2.7	30
130	Biodiversity in European agricultural landscapes: transformative societal changes needed. Trends in Ecology and Evolution, 2021, 36, 1067-1070.	4.2	29
131	Importance of Primary and Secondary Seed Dispersal in the Malagasy Tree Commiphora guillaumini. Ecology, 1999, 80, 821.	1.5	28
132	Large mammal diversity matters for wildlife tourism in Southern African Protected Areas: Insights for management. Ecosystem Services, 2018, 31, 481-490.	2.3	28
133	Synergistic effects of climate and land use on avian betaâ€diversity. Diversity and Distributions, 2017, 23, 1246-1255.	1.9	27
134	Reward quality predicts effects of bird-pollinators on the reproduction of African Protea shrubs. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 209-217.	1.1	26
135	Life-history of two African Sylvia warblers: low annual fecundity and long post-fledging care. Ibis, 2004, 146, 427-437.	1.0	25
136	High seedling recruitment of indigenous tree species in forest plantations in Kakamega Forest, western Kenya. Forest Ecology and Management, 2009, 257, 143-150.	1.4	25
137	Frugivores and seed dispersal (1985–2010); the â€~seeds' dispersed, established and matured. Acta Oecologica, 2011, 37, 517-520.	0.5	25
138	Spatial patterns of pathogenic and mutualistic fungi across the elevational range of a host plant. Journal of Ecology, 2018, 106, 1545-1557.	1.9	25
139	Elevationâ€dependent effects of forest fragmentation on plant–bird interaction networks in the tropical Andes. Ecography, 2018, 41, 1497-1506.	2.1	25
140	Tree visitation and seed dispersal of wild cherries by terrestrial mammals along a human land-use gradient. Basic and Applied Ecology, 2010, 11, 532-541.	1.2	24
141	Disentangling the effects of multiple environmental drivers on population changes within communities. Journal of Animal Ecology, 2018, 87, 1034-1045.	1.3	24
142	Distinct carbon sources indicate strong differentiation between tropical forest and farmland bird communities. Oecologia, 2013, 171, 473-486.	0.9	23
143	Seed perishability determines the caching behaviour of a foodâ€hoarding bird. Journal of Animal Ecology, 2015, 84, 71-78.	1.3	23
144	Avian Community Dynamics Are Discordant in Space and Time. Oikos, 1994, 70, 121.	1.2	22

#	Article	IF	CITATIONS
145	Pollination ecology of the dioecious tree Commiphora guillauminii in Madagascar. Journal of Tropical Ecology, 2004, 20, 307-316.	0.5	22
146	Linking seed dispersal and genetic structure of trees: a biogeographical approach. Journal of Biogeography, 2009, 36, 242-254.	1.4	22
147	Nomadism and seasonal range expansion in a large frugivorous bird. Ecography, 2015, 38, 54-62.	2.1	22
148	Similar composition of functional roles in Andean seedâ€dispersal networks, despite high species and interaction turnover. Ecology, 2020, 101, e03028.	1.5	22
149	The Signed Mantel test to cope with autocorrelation in comparative analyses. Journal of Applied Statistics, 2001, 28, 725-736.	0.6	21
150	Direct and indirect effects of elevation, climate and vegetation structure on bird communities on a tropical mountain. Acta Oecologica, 2020, 102, 103500.	0.5	21
151	Coexistence of plant species in a biodiversity hotspot is stabilized by competition but not by seed predation. Oikos, 2017, 126, .	1.2	19
152	Macroecology meets global change research. Global Ecology and Biogeography, 2008, 17, 3-4.	2.7	18
153	Identification of the lipids and the ant attractant 1,2-dioleoylglycerol in the arils of Commiphora guillaumini Perr. (Burseraceae) by supercritical fluid chromatography-atmospheric pressure chemical ionisation mass spectrometry. Journal of Chromatography A, 1996, 727, 139-146.	1.8	17
154	Cross-taxa generalities in the relationship between population abundance and ambient temperatures. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170870.	1.2	17
155	Does Forest Fragmentation and Selective Logging Affect Seed Predators and Seed Predation Rates of <i>Prunus africana</i> (Rosaceae)?. Biotropica, 2008, 40, 218-224.	0.8	16
156	Bats are Not Birds – Different Responses to Human Landâ€use on a Tropical Mountain. Biotropica, 2015, 47, 497-508.	0.8	16
157	Evidence for distinct evolutionary optima in the morphology of migratory and resident birds. Journal of Avian Biology, 2018, 49, e01807.	0.6	16
158	Different responses of taxonomic and functional bird diversity to forest fragmentation across an elevational gradient. Oecologia, 2019, 189, 863-873.	0.9	16
159	Specialists and generalists fulfil important and complementary functional roles in ecological processes. Functional Ecology, 2021, 35, 1810-1821.	1.7	16
160	Fine-scale spatial genetic dynamics over the life cycle of the tropical tree Prunus africana. Heredity, 2014, 113, 401-407.	1.2	15
161	Direct and indirect effects of plant and frugivore diversity on structural and functional components of fruit removal by birds. Oecologia, 2019, 189, 435-445.	0.9	15
162	Human impact diminishes seedling species richness in Kakamega Forest, Kenya. Basic and Applied Ecology, 2008, 9, 383-391.	1.2	14

#	Article	IF	Citations
163	Reduced abundance of late-successional trees but not of seedlings in heavily compared with lightly logged sites of three East African tropical forests. Journal of Tropical Ecology, 2010, 26, 533-546.	0.5	14
164	A framework integrating physiology, dispersal and landâ€use to project species ranges under climate change. Journal of Avian Biology, 2017, 48, 1532-1548.	0.6	14
165	Functional responses of avian frugivores to variation in fruit resources between natural and fragmented forests. Functional Ecology, 2019, 33, 399-410.	1.7	14
166	Triggering and ecological significance of floral color change in Lungwort (Pulmonaria spec.). Flora: Morphology, Distribution, Functional Ecology of Plants, 1995, 190, 155-159.	0.6	13
167	A bird pollinator shows positive frequency dependence and constancy of species choice in natural plant communities. Ecology, 2016, 97, 3110-3118.	1.5	13
168	Positive relationship between fruit removal by animals and seedling recruitment in a tropical forest. Basic and Applied Ecology, 2017, 20, 31-39.	1.2	13
169	The importance of vegetation density for tourists' wildlife viewing experience and satisfaction in African savannah ecosystems. PLoS ONE, 2017, 12, e0185793.	1.1	13
170	Abiotic and biotic drivers of functional diversity and functional composition of bird and bat assemblages along a tropical elevation gradient. Diversity and Distributions, 2021, 27, 2344-2356.	1.9	13
171	Ursachen für Bestandseinbußen europÃ⊠cher Singvögel: eine Analyse der Fangdaten des Mettnau-Reit-Illmitz-Programms. Journal Fur Ornithologie, 1992, 133, 413-425.	1.2	12
172	Low fruit set in a dioecious tree: pollination ecology of Commiphora harveyi in South Africa. Journal of Tropical Ecology, 2005, 21, 179-188.	0.5	12
173	Nest predation is little affected by parental behaviour and nest site in two African Sylvia warblers. Journal Fur Ornithologie, 2005, 146, 167-175.	1.2	12
174	Relationships between abiotic environment, plant functional traits, and animal body size at Mount Kilimanjaro, Tanzania. PLoS ONE, 2017, 12, e0174157.	1.1	12
175	Projecting consequences of global warming for the functional diversity of fleshyâ€fruited plants and frugivorous birds along a tropical elevational gradient. Diversity and Distributions, 2019, 25, 1362-1374.	1.9	12
176	A research framework for projecting ecosystem change in highly diverse tropical mountain ecosystems. Oecologia, 2021, 195, 589-600.	0.9	12
177	Secondary metabolites of ripe fleshy fruits: ecology and phylogeny in the genus $<$ i $>$ Solanum $<$ /i $>$, 2002, , 111-128.		12
178	Biodiversity and ecosystem functions depend on environmental conditions and resources rather than the geodiversity of a tropical biodiversity hotspot. Scientific Reports, 2021, 11, 24530.	1.6	12
179	Monthly survival of African Sylvia warblers in a seasonally arid tropical environment. Ibis, 2006, 148, 411-424.	1.0	11
180	The indirect effects of habitat disturbance on the bird communities in a tropical African forest. Biodiversity and Conservation, 2015, 24, 3083-3107.	1.2	11

#	Article	IF	CITATIONS
181	Seedâ€dispersal networks respond differently to resource effects in open and forest habitats. Oikos, 2018, 127, 847-854.	1.2	11
182	Zur Nahrungsökologie des Weißstorchs (Ciconia ciconia) in Oberschwaben: Beobachtungen an zwei Paaren. Journal Fur Ornithologie, 1992, 133, 61-71.	1.2	10
183	Changes of effective gene dispersal distances by pollen and seeds across successive life stages in a tropical tree. Oikos, 2013, 122, 1616-1625.	1.2	10
184	Combining long-term land cover time series and field observations for spatially explicit predictions on changes in tropical forest biodiversity. International Journal of Remote Sensing, 2012, 33, 13-40.	1.3	9
185	Avian Community Dynamics Are Discordant in Space and Time. , 1994, , 46-52.		9
186	Rethinking individual relationships with entities of nature. People and Nature, 2022, 4, 596-611.	1.7	9
187	Perturbed partners: opposite responses of plant and animal mutualist guilds to inundation disturbances. Oikos, 2007, 116, 1299-1310.	1.2	8
188	Effects of phylogeny and geography on ecomorphological traits in passerine bird clades. Journal of Biogeography, 2018, 45, 2337-2347.	1.4	8
189	Climatic effects on niche evolution in a passerine bird clade depend on paleoclimate reconstruction method. Evolution; International Journal of Organic Evolution, 2021, 75, 1046-1060.	1.1	8
190	Life history variation across a riverine landscape: intermediate levels of disturbance favor sexual reproduction in the antâ€dispersed herb <i>Ranunculus ficaria</i> . Ecography, 2008, 31, 776-786.	2.1	7
191	A tale of two seasons: The link between seasonal migration and climatic niches in passerine birds. Ecology and Evolution, 2020, 10, 11983-11997.	0.8	7
192	Environmental context determines the limiting demographic processes for plant recruitment across a species' elevational range. Scientific Reports, 2020, 10, 10855.	1.6	6
193	Rates of ecomorphological trait evolution in passerine bird clades are independent of age. Biological Journal of the Linnean Society, 2020, 129, 543-557.	0.7	6
194	The rise and fall of biodiversity in literature: A comprehensive quantification of historical changes in the use of vernacular labels for biological taxa in Western creative literature. People and Nature, 2021, 3, 1093-1109.	1.7	6
195	Frugivore diversity increases frugivory rates along a large elevational gradient. Oikos, 2016, 125, 245-253.	1.2	5
196	Global patterns of thermal tolerances and vulnerability of endotherms to climate change remain robust irrespective of varying data suitability criteria. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170232.	1.2	5
197	Phylogenetic and Functional Diversity of Fleshy-Fruited Plants Are Positively Associated with Seedling Diversity in a Tropical Montane Forest. Frontiers in Ecology and Evolution, 2017, 5, .	1.1	5
198	Direct and plantâ€mediated effects of climate on bird diversity in tropical mountains. Ecology and Evolution, 2020, 10, 14196-14208.	0.8	5

#	Article	IF	CITATIONS
199	Avian seed dispersal may be insufficient for plants to track future temperature change on tropical mountains. Global Ecology and Biogeography, 2022, 31, 848-860.	2.7	5
200	Traitâ€dependent occupancy dynamics of birds in temperate forest landscapes: fineâ€scale observations in a hierarchical multiâ€species framework. Animal Conservation, 2012, 15, 626-637.	1.5	4
201	Dynamik von Zugvogelgemeinschaften in verschiedenen Gebieten und ZeitrÄ g men. Journal Fur Ornithologie, 1995, 136, 149-158.	1.2	3
202	Does an ant-dispersed plant, Viola reichenbachiana, suffer from reduced seed dispersal under inundation disturbances?. Basic and Applied Ecology, 2008, 9, 108-116.	1.2	3
203	Phylogenetic signals in thermal traits remain stronger in the tropics if we can believe published physiological data. A reply to McKechnie etÂal. <i>,</i> "Data quality problems undermine analyses of endotherm upper critical temperatures†Journal of Biogeography, 2017, 44, 2427-2431.	1.4	3
204	Linking Landâ€Use Scenarios, Remote Sensing and Monitoring to Project Impact of Management Decisions. Biotropica, 2014, 46, 357-366.	0.8	2
205	Associations of bird and bat species richness with temperature and remote sensingâ€based vegetation structure on a tropical mountain. Biotropica, 2022, 54, 135-145.	0.8	2
206	Biodiversitäund Klima: Wandel in vollem Gange!. Biologie in Unserer Zeit, 2011, 41, 248-255.	0.3	1
207	Diurnal timing of nonmigratory movement by birds: the importance of foraging spatial scales. Journal of Avian Biology, 2020, 51, .	0.6	1
208	Klimawandeleffekte morgen:., 2013,, 84-159.		1
209	Potential of Airborne LiDAR Derived Vegetation Structure for the Prediction of Animal Species Richness at Mount Kilimanjaro. Remote Sensing, 2022, 14, 786.	1.8	1
210	Macroecology meets IPBES. Frontiers of Biogeography, 2016, 7, .	0.8	0
211	Response to Kabisch and Colleagues. BioScience, 2018, 68, 167-168.	2.2	0
212	Cover Image: Volume 25 Number 3, March 2022. Ecology Letters, 2022, 25, .	3.0	0