
Esmaiel Jabbari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/740896/publications.pdf Version: 2024-02-01

FSMALEL LABRADI

#	Article	IF	CITATIONS
1	Swelling behavior of acrylic acid hydrogels prepared by γ-radiation crosslinking of polyacrylic acid in aqueous solution. European Polymer Journal, 2000, 36, 2685-2692.	5.4	226
2	Effect of Grafting RGD and BMP-2 Protein-Derived Peptides to a Hydrogel Substrate on Osteogenic Differentiation of Marrow Stromal Cells. Langmuir, 2008, 24, 12508-12516.	3.5	186
3	Liposome encapsulation of curcumin: Physico-chemical characterizations and effects on MCF7 cancer cell proliferation. International Journal of Pharmaceutics, 2014, 461, 519-528.	5.2	164
4	Thermally Cross-Linked Oligo(poly(ethylene glycol) fumarate) Hydrogels Support Osteogenic Differentiation of Encapsulated Marrow Stromal Cells In Vitro. Biomacromolecules, 2004, 5, 5-10.	5.4	144
5	Quantitative analysis of interconnectivity of porous biodegradable scaffolds with micro-computed tomography. Journal of Biomedical Materials Research Part B, 2004, 71A, 258-267.	3.1	140
6	Regenerative Scar-Free Skin Wound Healing. Tissue Engineering - Part B: Reviews, 2019, 25, 294-311.	4.8	132
7	Regulation of osteogenic differentiation of rat bone marrow stromal cells on 2D nanorod substrates. Biomaterials, 2010, 31, 1732-1741.	11.4	128
8	Fabrication and Characterization of Poly(Propylene Fumarate) Scaffolds with Controlled Pore Structures Using 3-Dimensional Printing and Injection Molding. Tissue Engineering, 2006, 12, 2801-2811.	4.6	127
9	Spatiotemporal release of BMP-2 and VEGF enhances osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells co-encapsulated in a patterned hydrogel. Journal of Controlled Release, 2016, 223, 126-136.	9.9	124
10	In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels. Journal of Biomedical Materials Research Part B, 2004, 70A, 235-244.	3.1	122
11	Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano Structures Nano Objects, 2018, 14, 19-48.	3.5	122
12	Evidence of mucoadhesion by chain interpenetration at a poly (acrylic acid)/mucin interface using ATR-FTIR spectroscopy. Journal of Controlled Release, 1993, 26, 99-108.	9.9	115
13	Animal models of spinal cord injury for evaluation of tissue engineering treatment strategies. Biomaterials, 2004, 25, 1505-1510.	11.4	111
14	Use of ATR-FTIR to study interdiffusion in polystyrene and poly(vinyl methyl ether). Macromolecules, 1993, 26, 2175-2186.	4.8	108
15	Free and hydrogel encapsulated exosome-based therapies in regenerative medicine. Life Sciences, 2020, 249, 117447.	4.3	106
16	Synthesis, Material Properties, and Biocompatibility of a Novel Self-Cross-Linkable Poly(caprolactone) Tj ETQqO	0 0 rgBT /C	verlock 10 Tf

17	Nanoscale tissue engineering: spatial control over cell-materials interactions. Nanotechnology, 2011, 22, 212001.	2.6	100
18	Optimum 3D Matrix Stiffness for Maintenance of Cancer Stem Cells Is Dependent on Tissue Origin of Cancer Cells. PLoS ONE, 2015, 10, e0132377.	2.5	97

#	Article	IF	CITATIONS
19	Material Properties and Cytocompatibility of Injectable MMP Degradable Poly(lactide ethylene oxide) Tj ETQq1	1 0.784314 5.4	l rgBT /Over
20	Osteogenic Differentiation of Marrow Stromal Cells on Random and Aligned Electrospun Poly(l-lactide) Nanofibers. Annals of Biomedical Engineering, 2011, 39, 14-25.	2.5	84
21	Material properties and osteogenic differentiation of marrow stromal cells on fiber-reinforced laminated hydrogel nanocomposites. Acta Biomaterialia, 2010, 6, 1992-2002.	8.3	80
22	Microwave-assisted and one-step synthesis of PEG passivated fluorescent carbon dots from gelatin as an efficient nanocarrier for methotrexate delivery. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 540-547.	2.8	74
23	Advances in tannic acid-incorporated biomaterials: Infection treatment, regenerative medicine, cancer therapy, and biosensing. Chemical Engineering Journal, 2022, 432, 134146.	12.7	71
24	Bioconjugation of hydrogels for tissue engineering. Current Opinion in Biotechnology, 2011, 22, 655-660.	6.6	69
25	Three-Dimensional-Engineered Matrix to Study Cancer Stem Cells and Tumorsphere Formation: Effect of Matrix Modulus. Tissue Engineering - Part A, 2013, 19, 669-684.	3.1	68
26	Functionalized carbon-based nanomaterials and quantum dots with antibacterial activity: a review. Expert Review of Anti-Infective Therapy, 2021, 19, 35-44.	4.4	68
27	Morphology of and release behavior from porous polyurethane microspheres. Biomaterials, 2000, 21, 2073-2079.	11.4	67
28	Viscoelastic Characterization and Modeling of Gelation Kinetics of Injectable In Situ Cross-Linkable Poly(lactide-co-ethylene oxide-co-fumarate) Hydrogels. Biomacromolecules, 2007, 8, 406-415.	5.4	65
29	Migration of marrow stromal cells in response to sustained release of stromal-derived factor-1α from poly(lactide ethylene oxide fumarate) hydrogels. International Journal of Pharmaceutics, 2010, 390, 107-116.	5.2	61
30	Cube-octameric silsesquioxane-mediated cargo copper Schiff base for efficient click reaction in aqueous media. Journal of Molecular Catalysis A, 2016, 414, 47-54.	4.8	59
31	Engineering Photocrosslinkable Bicomponent Hydrogel Constructs for Creating 3D Vascularized Bone. Advanced Healthcare Materials, 2017, 6, 1601122.	7.6	59
32	Combined Effect of Osteopontin and BMP-2 Derived Peptides Grafted to an Adhesive Hydrogel on Osteogenic and Vasculogenic Differentiation of Marrow Stromal Cells. Langmuir, 2012, 28, 5387-5397.	3.5	53
33	A Fresh Look at the Male-specific Region of the Human Y Chromosome. Journal of Proteome Research, 2013, 12, 6-22.	3.7	52
34	Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano β-tricalcium phosphate porous scaffolds crosslinked with genipin. Materials Science and Engineering C, 2015, 54, 76-83.	7.3	52
35	A model for interdiffusion at interfaces of polymers with dissimilar physical properties. Polymer, 1995, 36, 575-586.	3.8	51
36	Effect of osteonectin-derived peptide on the viscoelasticity of hydrogel/apatite nanocomposite scaffolds. Biopolymers, 2007, 85, 370-378.	2.4	51

#	Article	IF	CITATIONS
37	Effect of surface modification of nanofibres with glutamic acid peptide on calcium phosphate nucleation and osteogenic differentiation of marrow stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, E132-E146.	2.7	51

38 Cytotoxicity of Paclitaxel in Biodegradable Self-Assembled Core-Shell Poly(Lactide-Co-Glycolide) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 70

39	Polymer-Polymer Interdiffusion and Adhesion. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 1994, 34, 205-241.	2.2	49
40	Gelation and degradation characteristics of in situ photo-crosslinked poly(l-lactide-co-ethylene) Tj ETQq0 0 0 rgB	Г / <u>Gy</u> erlock	≀ 10 Tf 50 6
41	Covalently immobilized VEGF-mimicking peptide with gelatin methacrylate enhances microvascularization of endothelial cells. Acta Biomaterialia, 2017, 51, 330-340.	8.3	49
42	Modeling the Viscoelastic Response of Suspension of Particles in Polymer Solution: The Effect of Polymer-Particle Interactions. Macromolecular Theory and Simulations, 2007, 16, 378-385.	1.4	47
43	Modeling and Experimental Investigation of Rheological Properties of Injectable Poly(lactide ethylene) Tj ETQq1 1	0.784314 5.4	∔ rgBT /Ove 46
44	Comparative effect of physicomechanical and biomolecular cues on zone-specific chondrogenic differentiation of mesenchymal stem cells. Biomaterials, 2016, 92, 57-70.	11.4	46
45	Gelation Characteristics and Osteogenic Differentiation of Stromal Cells in Inert Hydrolytically Degradable Micellar Polyethylene Clycol Hydrogels. Biomacromolecules, 2012, 13, 2073-2086.	5.4	45
46	Release characteristics and osteogenic activity of recombinant human bone morphogenetic protein-2 grafted to novel self-assembled poly(lactide-co-glycolide fumarate) nanoparticles. Journal of Controlled Release, 2009, 140, 148-156.	9.9	42
47	Drug release kinetics, cell uptake, and tumor toxicity of hybrid VVVVVKK peptide-assembled polylactide nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 49-62.	4.3	42
48	A developmentally inspired combined mechanical and biochemical signaling approach on zonal lineage commitment of mesenchymal stem cells in articular cartilage regeneration. Integrative Biology (United Kingdom), 2015, 7, 112-127.	1.3	42
49	Swelling characteristics of acrylic acid polyelectrolyte hydrogel in a dc electric field. Smart Materials and Structures, 2007, 16, 1614-1620.	3.5	41
50	Monte Carlo Simulation of Degradation of Porous Poly(lactide) Scaffolds, 1. Macromolecular Theory and Simulations, 2006, 15, 643-653.	1.4	40
51	Synthesis and Characterization of Photo-Cross-Linkable Keratin Hydrogels for Stem Cell Encapsulation. Biomacromolecules, 2017, 18, 398-412.	5.4	40
52	The matrix reloaded: the evolution of regenerative hydrogels. Materials Today, 2016, 19, 190-196.	14.2	39
53	Nanoparticles for Targeted Drug Delivery to Cancer Stem Cells: A Review of Recent Advances. Nanomaterials, 2021, 11, 1755.	4.1	39
54	Synthesis and characterization of bioresorbable in situ crosslinkable ultra low molecular weight poly(lactide) macromer. Journal of Materials Science: Materials in Medicine, 2008, 19, 311-318.	3.6	37

#	Article	IF	CITATIONS
55	Electropsun Polycaprolactone Fibres in Bone Tissue Engineering: A Review. Molecular Biotechnology, 2021, 63, 363-388.	2.4	36
56	Effect of CD44 Binding Peptide Conjugated to an Engineered Inert Matrix on Maintenance of Breast Cancer Stem Cells and Tumorsphere Formation. PLoS ONE, 2013, 8, e59147.	2.5	35
57	Effect of Organic Acids on Calcium Phosphate Nucleation and Osteogenic Differentiation of Human Mesenchymal Stem Cells on Peptide Functionalized Nanofibers. Langmuir, 2015, 31, 5130-5140.	3.5	34
58	Thermoresponsive Nanogels Based on Different Polymeric Moieties for Biomedical Applications. Gels, 2020, 6, 20.	4.5	34
59	Synthesis and gelation characteristics of photo-crosslinkable star Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Ove	rlock 10 T	f 50 ₃₂ 582 Td (
60	Analysis of cell locomotion on ligand gradient substrates. Biotechnology and Bioengineering, 2009, 103, 424-429.	3.3	29
61	Intelligent Monte Carlo: A New Paradigm for Inverse Polymerization Engineering. Macromolecular Theory and Simulations, 2018, 27, 1700106.	1.4	29
62	Osteonectin-derived peptide increases the modulus of a bone-mimetic nanocomposite. European Biophysics Journal, 2008, 37, 229-234.	2.2	28
63	Concurrent Differentiation of Marrow Stromal Cells to Osteogenic and Vasculogenic Lineages. Macromolecular Bioscience, 2008, 8, 499-507.	4.1	28
64	Challenges for Natural Hydrogels in Tissue Engineering. Gels, 2019, 5, 30.	4.5	28
65	Osteogenic Peptides in Bone Regeneration. Current Pharmaceutical Design, 2013, 19, 3391-3402.	1.9	28
66	POSS-Based Covalent Networks: Supporting and Stabilizing Pd for Heck Reaction in Aqueous Media. Catalysis Letters, 2017, 147, 1086-1094.	2.6	26
67	Cube-octameric silsesquioxane (POSS)-capped magnetic iron oxide nanoparticles for the efficient removal of methylene blue. Frontiers of Chemical Science and Engineering, 2019, 13, 563-573.	4.4	26
68	Mesoscale Simulation of the Effect of a Lactide Segment on the Nanostructure of Star Poly(ethylene) Tj ETQq0 C Chemistry B, 2012, 116, 1536-1543.	0 rgBT /C 2.6	overlock 10 Tf 25
69	Material properties of degradable Poly(butylene succinate-co-fumarate) copolymer networks synthesized by polycondensation of pre-homopolyesters. Polymer, 2016, 98, 70-79.	3.8	25
70	Material properties and cell compatibility of poly(γ-glutamic acid)-keratin hydrogels. International Journal of Biological Macromolecules, 2020, 142, 790-802.	7.5	25
71	Synthesis of polyhedral oligomeric silsesquioxane nanoâ€crosslinked poly(ethylene glycol)â€based hybrid hydrogels for drug delivery and antibacterial activity. Polymer International, 2019, 68, 667-674.	3.1	24
72	Development of biodegradable poly(propylene fumarate)/poly(lactic-co-glycolic acid) blend microspheres. II. Controlled drug release and microsphere degradation. Journal of Biomedical Materials Research Part B, 2004, 70A, 293-302.	3.1	23

#	Article	IF	CITATIONS
73	Targeted Delivery with Peptidomimetic Conjugated Self-Assembled Nanoparticles. Pharmaceutical Research, 2009, 26, 612-630.	3.5	23
74	Swelling behavior and cell viability of dehydrothermally crosslinked poly(vinyl alcohol) hydrogel grafted withN-vinyl pyrrolidone or acrylic acid using ?-radiation. Journal of Applied Polymer Science, 2004, 91, 2862-2868.	2.6	22
75	Mammalian PER2 regulates AKT activation and DNA damage response. Biochemistry and Cell Biology, 2012, 90, 675-682.	2.0	22
76	Time dependence of material properties of polyethylene glycol hydrogels chain extended with short hydroxy acid segments. Polymer, 2014, 55, 3894-3904.	3.8	22
77	Matrix Effects on Interdiffusion at the Polystyrene and Poly(vinyl methyl ether) Interface. Macromolecules, 1995, 28, 6229-6237.	4.8	21
78	Monte Carlo simulation of tri-functional branching and tetra-functional crosslinking in emulsion polymerization of butadiene. Polymer, 2001, 42, 4873-4884.	3.8	21
79	Solid-Phase Synthesis of Reactive Peptide Crosslinker by Selective Deprotection. Protein and Peptide Letters, 2006, 13, 715-718.	0.9	21
80	Effect of grafting BMP2-derived peptide to nanoparticles on osteogenic and vasculogenic expression of stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 15-28.	2.7	21
81	Intelligent Machine Learning: Tailor-Making Macromolecules. Polymers, 2019, 11, 579.	4.5	21
82	Development of biodegradable poly(propylene fumarate)/poly(lactic-co-glycolic acid) blend microspheres. I. Preparation and characterization. Journal of Biomedical Materials Research Part B, 2004, 70A, 283-292.	3.1	20
83	Nanostructure Formation and Transition from Surface to Bulk Degradation in Polyethylene Glycol Gels Chain-Extended with Short Hydroxy Acid Segments. Biomacromolecules, 2013, 14, 2917-2928.	5.4	20
84	Hydrogels for Cell Delivery. Gels, 2018, 4, 58.	4.5	20
85	Material properties and bone marrow stromal cells response to <i>In situ</i> crosslinkable RGDâ€functionlized lactideâ€ <i>co</i> â€glycolide scaffolds. Journal of Biomedical Materials Research - Part A, 2009, 89A, 124-137.	4.0	19
86	Experimental and Computational Investigation of the Effect of Hydrophobicity on Aggregation and Osteoinductive Potential of BMP-2-Derived Peptide in a Hydrogel Matrix. Tissue Engineering - Part A, 2015, 21, 134-146.	3.1	19
87	Gelation characteristics, physico-mechanical properties and degradation kinetics of micellar hydrogels. European Polymer Journal, 2015, 72, 566-576.	5.4	18
88	Effect of surface polarity on wettability and friction coefficient of silicone rubber/poly(acrylic acid) hydrogel composite. Colloid and Polymer Science, 2006, 284, 1411-1417.	2.1	17
89	The release characteristics of a model protein from self-assembled succinimide-terminated poly(lactide-co-glycolide ethylene oxide fumarate) nanoparticles. Nanotechnology, 2008, 19, 325609.	2.6	17
90	Material and regenerative properties of an osteon-mimetic cortical bone-like scaffold. International Journal of Energy Production and Management, 2019, 6, 89-98.	3.7	16

#	Article	IF	CITATIONS
91	Release characteristics of a model plasmid DNA encapsulated in biodegradable poly(ethylene glycol) Tj ETQq1 1	0.784314 2.8	∔rgBT /Overl⊂
92	A model for the viscoelastic behavior of nanofilled hydrogel composites under oscillatory shear loading. Polymer Composites, 2008, 29, 326-336.	4.6	15
93	Development of microparticles for controlled release of resveratrol to adipose tissue and the impact of drug loading on particle morphology and drug release. International Journal of Pharmaceutics, 2019, 568, 118469.	5.2	15
94	The Role of Filler-Matrix Interaction on Viscoelastic Response of Biomimetic Nanocomposite Hydrogels. Journal of Nanomaterials, 2008, 2008, 1-9.	2.7	14
95	Nanoparticles and Their Applications. Springer Handbooks, 2017, , 335-361.	0.6	14
96	Antiviral Polymers: A Review. Polymers, 2022, 14, 1634.	4.5	13
97	Effect of encapsulation or grafting on release kinetics of recombinant human bone morphogenetic proteinâ€2 from selfâ€assembled poly(lactideâ€ <i>co</i> â€glycolide ethylene oxide fumarate) nanoparticles. Microscopy Research and Technique, 2010, 73, 824-833.	2.2	12
98	Purification of high-quality RNA from synthetic polyethylene glycol-based hydrogels. Analytical Biochemistry, 2015, 484, 1-3.	2.4	11
99	Effect of a low-molecular-weight cross-linkable macromer on electrospinning of poly(lactide-co-glycolide) fibers. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1369-1385.	3.5	10
100	Morphogenic Peptides in Regeneration of Load Bearing Tissues. Advances in Experimental Medicine and Biology, 2015, 881, 95-110.	1.6	10
101	Plasmin-Cleavable Nanoparticles for On-Demand Release of Morphogens in Vascularized Osteogenesis. Biomacromolecules, 2019, 20, 2973-2988.	5.4	10
102	Mapping the concentration profile at the poly(vinyl chloride)/poly(ethyl methacrylate) interface. Polymer Bulletin, 1991, 27, 305-309.	3.3	9
103	Morphology and structure of microcapsules prepared by interfacial polycondensation of methylene bis(phenyl isocyanate) with hexamethylene diamine. Journal of Microencapsulation, 2001, 18, 801-809.	2.8	9
104	A novel high-flux, thin-film composite desalination membrane via co-deposition of multifunctional polyhedral oligomeric silsesquioxane and polyoxometalate. Polyhedron, 2019, 168, 138-145.	2.2	9
105	Comparison of interdiffusion at polystyrene–poly(vinyl methyl ether) and polystyrene–poly(isobutyl) Tj ETQ	q1 1 0.78	431 <mark>4</mark> rgBT /
106	Modeling the kinetics of cell membrane spreading on substrates with ligand density gradient. Journal of Biomechanics, 2008, 41, 921-925.	2.1	8
107	Fabrication of <i>in situ</i> polymerized poly(butylene succinateâ€coâ€ethylene) Tj ETQq1 1 0.784314 rgBT /C Journal of Biomedical Materials Research - Part A, 2017, 105, 2622-2631.	verlock 10 4.0	0 Tf 50 107 1 8
108	Sequential Zonal Chondrogenic Differentiation of Mesenchymal Stem Cells in Cartilage Matrices. Tissue Engineering - Part A, 2019, 25, 234-247.	3.1	8

#	Article	IF	CITATIONS
109	Quantitative measurement of interdiffusion at polymer–polymer interfaces with TEM/EDS and EELS. Journal of Applied Polymer Science, 1995, 57, 775-779.	2.6	7

110 Effect of composition on gelation kinetics of unfilled and nanoapatite-filled poly(lactide-ethylene) Tj ETQq0 0 0 rgBT./Overlock 10 Tf 50

111	biomimetic Hydrogel/apatite Nanocomposite Scaffolds for Bone Regeneration. Materials Research Society Symposia Proceedings, 2005, 897, 1.	0.1	3
112	Effects of Dynamic Fluid Pressure on Chondrocytes Cultured in Biodegradable Poly(glycolic acid) Fibrous Scaffolds. Tissue Engineering, 2005, 11, 1852-1859.	4.6	3
113	Fabrication of Biomimetic Scaffolds With Well-Defined Pore Geometry by Fused Deposition Modeling. , 2007, , 71.		3
114	Hydrogels for Cell Encapsulation and Bioprinting. Pancreatic Islet Biology, 2015, , 89-108.	0.3	3
115	Nanofiber Based Matrices for Chondrogenic Differentiation of Stem Cells. Journal of Nanoscience and Nanotechnology, 2016, 16, 8966-8977.	0.9	3
116	Toward Olefin Multiblock Copolymers with Tailored Properties: A Molecular Perspective. Macromolecular Theory and Simulations, 2021, 30, 2100003.	1.4	3
117	3D Cell Culture in Micropatterned Hydrogels Prepared by Photomask, Microneedle, or Soft Lithography Techniques. Methods in Molecular Biology, 2017, 1612, 239-252.	0.9	3
118	Nanostructure Formation in Hydrogels. , 2014, , 285-297.		3
119	Decellularized Articular Cartilage Microgels as Microcarriers for Expansion of Mesenchymal Stem Cells. Gels, 2022, 8, 148.	4.5	3
120	Role of substrate microstructure on osteogenic differentiation of mesenchymal stem cells. , 2010, 2010, 3543-5.		2
121	Engineering bone formation with peptidomimetic hybrid biomaterials. , 2009, 2009, 1172-5.		1
122	ENGINEERING THE TISSUE EXTRACELLULAR MATRIX WITH HYBRID BIOMATERIALS. , 2010, , 1-11.		1
123	Effect of sustained release of bone morphogenetic protein on osteogenic expression of mesenchymal stem cells. , 2010, 2010, 3733-5.		1
124	Devitalized Stem Cell Microsheets for Sustainable Release of Osteogenic and Vasculogenic Growth Factors and Regulation of Antiâ€Inflammatory Immune Response. Advanced Biology, 2017, 1, 1600011.	3.0	1
125	Correlating Coating Quality of Coverage with Rheology for Mica-Based Paints. Applied Rheology, 2020, 30, 119-129.	5.2	1
126	Synthesis and biological evaluation of novel tetranuclear cyclopalladated complex bearing thiosemicarbazone scaffold ligand: Interactions with doubleâ€strand DNA, coronavirus, and molecular modeling studies. Applied Organometallic Chemistry, 2022, 36, .	3.5	1

#	Article	lF	CITATIONS
127	Effect of Ligand Density Gradient on the Adhesion Kinetics of Biological Membranes. Materials Research Society Symposia Proceedings, 2007, 1063, 1.	0.1	0
128	The Role of Polymer-particle Interactions on the Viscoelastic Properties of Polymer Nanocomposites. Materials Research Society Symposia Proceedings, 2007, 1056, 1.	0.1	0
129	Synthesis and Characterization of Peptidomimetic Self-Assembled Biodegradable Nanoparticles. Materials Research Society Symposia Proceedings, 2009, 1238, 1.	0.1	0
130	Migration of Marrow Stromal Cells in Response to Sustained Release of Stromal-Derived Factor-1α from Poly(lactide ethylene oxide fumarate) Hydrogels. Materials Research Society Symposia Proceedings, 2009, 1235, 1.	0.1	0
131	Marrow Stromal Cell Reponse to Fiber-Reinforced Laminated Nanocomposites. Materials Research Society Symposia Proceedings, 2009, 1235, 1.	0.1	0
132	Bone-Mimetic Laminated Nano-Structures for Regeneration of Skeletal Tissues. Advances in Science and Technology, 0, , .	0.2	0
133	Effect of BMP-2 Derived Peptide Grafted to Nanoparticles on Differentiation of Stromal Cells. Materials Research Society Symposia Proceedings, 2012, 1417, 81.	0.1	0
134	Gelation Characteristics and Encapsulation of Stromal Cells in Star Acrylate-Functionalized Poly(ethylene glycol-co-lactide) Macromonomers. Materials Research Society Symposia Proceedings, 2012, 1403, 67.	0.1	0
135	Mesoscale Simulation of the Structure of Star Acrylated Poly(ethylene glycol-co-lactide) Hydrogels. Materials Research Society Symposia Proceedings, 2012, 1418, 93.	0.1	0
136	Matrix Modulus Affects Invasion Rate of Tumor Cells through Synthetic Hydrogels. Materials Research Society Symposia Proceedings, 2012, 1418, 45.	0.1	0
137	Nanomedicine. , 2012, , 1644-1644.		0
138	Nanostructures for Coloration (Organisms other than Animals). , 2012, , 1790-1803.		0
139	Nano-FET. , 2012, , 1543-1543.		0
140	BIOINSPIRED ENGINEERED MATRIX TO REGULATE CANCER STEM CELL NICHE. World Scientific Series in Nanoscience and Nanotechnology, 2014, , 1257-1274.	0.1	0
141	Developmentally Inspired Approach to Cartilage Tissue Engineering. Advances in Science and Technology, 0, , .	0.2	0
142	Protection against Advanced Glycation End Products and the Mode of Action of Lemon Balm on Hemoglobin Fructose-Mediated Glycation. , 2017, 7, .		0
143	Animal Models for Evaluation of Tissue-Engineered Orthopedic Implants. , 2007, , 16-1-16-10.		0
144	Abstract LB-492: CD44 binding peptide attached to an engineered matrix prevents the formation of CSC tumorspheres. , 2012, , .		0

#	Article	IF	CITATIONS
145	Autoinductive Scaffolds for Osteogenic Differentiation of Mesenchymal Stem Cells. , 2012, , 169-184.		О
146	Abstract 169: Maintenance of breast cancer stem cells in an inert matrix is mediated by mesenchymal stem cells in the tumor stroma. , 2014, , .		0
147	Nanoengineered Hydrogels for Cell Engineering. , 2016, , 2379-2384.		О
148	Engineering Bone Formation with Biologically Inspired Nanomaterials. , 2017, , 651-664.		0
149	Editorial for Gels 6th Anniversary Special Issue. Gels, 2022, 8, 249.	4.5	0