
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7408921/publications.pdf Version: 2024-02-01

ANNE PONCHEL

#	Article	IF	CITATIONS
1	Interesterification of triglycerides with methyl acetate for biodiesel production using a cyclodextrin-derived SnO@ $\hat{1}^3$ -Al2O3 composite as heterogeneous catalyst. Fuel, 2022, 321, 124026.	3.4	7
2	Effect of Functional Group on the Catalytic Activity of Lipase B from Candida antarctica Immobilized in a Silica-Reinforced Pluronic F127/α-Cyclodextrin Hydrogel. Gels, 2022, 8, 3.	2.1	3
3	Cyclodextrins: a new and effective class of co-modulators for aqueous zirconium-MOF syntheses. CrystEngComm, 2021, 23, 2764-2772.	1.3	11
4	Asymmetric hydrogenation of ethyl pyruvate over aqueous dispersed Pt nanoparticles stabilized by a cinchonidine-functionalized Î ² -cyclodextrin. Catalysis Communications, 2021, 150, 106272.	1.6	2
5	Robust Ruthenium Catalysts Supported on Mesoporous Cyclodextrin-Templated TiO2-SiO2 Mixed Oxides for the Hydrogenation of Levulinic Acid to γ-Valerolactone. International Journal of Molecular Sciences, 2021, 22, 1721.	1.8	1
6	Cyclodextrin-assisted catalytic hydrogenation of hydrophobic substrates with halloysite immobilized ruthenium NPs dispersed in aqueous phase. Journal of the Indian Chemical Society, 2021, 98, 100034.	1.3	5
7	Oxidation of 2,5-diformfylfuran to 2,5-furandicarboxylic acid catalyzed by Candida antarctica Lipase B immobilized in a cyclodextrin-templated mesoporous silica. The critical role of pore characteristics on the catalytic performance. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111606.	2.5	7
8	Cyclodextrins as multitask agents for metal nano-heterogeneous catalysis: a review. Environmental Chemistry Letters, 2021, 19, 4327-4348.	8.3	14
9	First Steps to Rationalize Host–Guest Interaction between α-, β-, and γ-Cyclodextrin and Divalent First-Row Transition and Post-transition Metals (Subgroups VIIB, VIIIB, and IIB). Inorganic Chemistry, 2021, 60, 930-943.	1.9	9
10	Ultrasound-assisted synthesis of NiO nanoparticles and their catalytic application for the synthesis of trisubstituted imidazoles under solvent free conditions. Catalysis Communications, 2021, 161, 106366.	1.6	7
11	Supported ruthenium nanoparticles on ordered mesoporous carbons using a cyclodextrin-assisted hard-template approach and their applications as hydrogenation catalysts. Journal of Catalysis, 2020, 383, 343-356.	3.1	19
12	Co3O4/C and Au supported Co3O4/C nanocomposites – Peculiarities of fabrication and application towards oxygen reduction reaction. Materials Chemistry and Physics, 2020, 241, 122332.	2.0	4
13	Fast Microwave Synthesis of Gold-Doped TiO2 Assisted by Modified Cyclodextrins for Photocatalytic Degradation of Dye and Hydrogen Production. Catalysts, 2020, 10, 801.	1.6	10
14	Metal Nanoparticles and Cyclodextrins for Catalytic Applications. Environmental Chemistry for A Sustainable World, 2020, , 219-279.	0.3	0
15	Confinement of <i>Candida Antarctica</i> Lipase B in a Multifunctional Cyclodextrin-Derived Silicified Hydrogel and Its Application as Enzymatic Nanoreactor. ACS Applied Bio Materials, 2019, 2, 5568-5581.	2.3	8
16	Catalytic glycosylation of glucose with alkyl alcohols over sulfonated mesoporous carbons. Molecular Catalysis, 2019, 468, 125-129.	1.0	16
17	Rhodium catalyzed selective hydroaminomethylation of biorenewable eugenol under aqueous biphasic condition. Molecular Catalysis, 2018, 452, 108-116.	1.0	10
18	Cyclodextrins and Nanostructured Porous Inorganic Materials. Environmental Chemistry for A Sustainable World, 2018, , 105-153.	0.3	1

#	Article	IF	CITATIONS
19	Robust Mesoporous CoMo/l³-Al ₂ O ₃ Catalysts from Cyclodextrin-Based Supramolecular Assemblies for Hydrothermal Processing of Microalgae: Effect of the Preparation Method. ACS Applied Materials & Interfaces, 2018, 10, 12562-12579.	4.0	18
20	Cyclodextrin-assisted low-metal Ni-Pd/Al2O3 bimetallic catalysts for the direct amination of aliphatic alcohols. Journal of Catalysis, 2018, 368, 172-189.	3.1	23
21	Cyclodextrin-based supramolecular assemblies: a versatile toolbox for the preparation of functional porous materials. Environmental Chemistry Letters, 2018, 16, 1393-1413.	8.3	15
22	Highly regio-selective hydroformylation of biomass derived eugenol using aqueous biphasic Rh/TPPTS/CDs as a greener and recyclable catalyst. Molecular Catalysis, 2017, 436, 157-163.	1.0	16
23	Cyclodextrin-Directed Synthesis of Gold-Modified TiO ₂ Materials and Evaluation of Their Photocatalytic Activity in the Removal of a Pesticide from Water: Effect of Porosity and Particle Size. ACS Sustainable Chemistry and Engineering, 2017, 5, 3623-3630.	3.2	43
24	Nonconventional Three-Component Hierarchical Host–Guest Assembly Based on Mo-Blue Ring-Shaped Giant Anion, γ-Cyclodextrin, and Dawson-type Polyoxometalate. Journal of the American Chemical Society, 2017, 139, 14376-14379.	6.6	81
25	Acid-tolerant cyclodextrin-based ruthenium nanoparticles for the hydrogenation of unsaturated compounds in water. Catalysis Science and Technology, 2017, 7, 5982-5992.	2.1	22
26	Polyoxometalate, Cationic Cluster, and γ-Cyclodextrin: From Primary Interactions to Supramolecular Hybrid Materials. Journal of the American Chemical Society, 2017, 139, 12793-12803.	6.6	137
27	Mixed oxides supported low-nickel formulations for the direct amination of aliphatic alcohols with ammonia. Journal of Catalysis, 2017, 356, 133-146.	3.1	39
28	Facile preparation of Ni/Al2O3 catalytic formulations with the aid of cyclodextrin complexes: Towards highly active and robust catalysts for the direct amination of alcohols. Journal of Catalysis, 2017, 356, 111-124.	3.1	52
29	Cyclodextrin-cobalt (II) molecule-ion pairs as precursors to active Co3O4/ZrO2 catalysts for the complete oxidation of formaldehyde: Influence of the cobalt source. Journal of Catalysis, 2016, 341, 191-204.	3.1	46
30	A Pd/CeO ₂ "H ₂ Pump―for the Direct Amination of Alcohols. ChemCatChem, 2016, 8, 3347-3352.	1.8	24
31	Mesoporous RuO ₂ /TiO ₂ composites prepared by cyclodextrin-assisted colloidal self-assembly: towards efficient catalysts for the hydrogenation of methyl oleate. RSC Advances, 2016, 6, 14570-14579.	1.7	17
32	Photocatalysis of Volatile Organic Compounds in water: Towards a deeper understanding of the role of cyclodextrins in the photodegradation of toluene over titanium dioxide. Journal of Colloid and Interface Science, 2016, 461, 317-325.	5.0	29
33	Cyclodextrins as Multitask Agents in Nanocatalysis. , 2016, , 1151-1175.		0
34	Biphasic Palladium atalyzed Hydroesterification in a Polyol Phase: Selective Synthesis of Derived Monoesters. ChemSusChem, 2015, 8, 2133-2137.	3.6	17
35	Selective Secondary Face Modification of Cyclodextrins by Mechanosynthesis. Journal of Organic Chemistry, 2015, 80, 6259-6266.	1.7	39
36	Palladium-catalyzed hydroesterification of olefins with isosorbide in standard and BrÃ,nsted acidic ionic liquids. Catalysis Communications, 2015, 69, 143-146.	1.6	6

#	Article	IF	CITATIONS
37	Ruthenium-containing β-cyclodextrin polymer globules for the catalytic hydrogenation of biomass-derived furanic compounds. Green Chemistry, 2015, 17, 2444-2454.	4.6	37
38	Evaluation of surface properties and pore structure of carbon on the activity of supported Ru catalysts in the aqueous-phase aerobic oxidation of HMF to FDCA. Applied Catalysis A: General, 2015, 506, 206-219.	2.2	65
39	Selfâ€Assembled Metastable γâ€Ga ₂ O ₃ Nanoflowers with Hexagonal Nanopetals for Solarâ€Blind Photodetection. Advanced Materials, 2014, 26, 6238-6243.	11.1	76
40	Understanding the Role of Cyclodextrins in the Self-Assembly, Crystallinity, and Porosity of Titania Nanostructures. Langmuir, 2014, 30, 11812-11822.	1.6	22
41	Temperature-dependent formation of Ru-based nanocomposites: structures and properties. RSC Advances, 2014, 4, 26847.	1.7	3
42	Block copolymer–cyclodextrin supramolecular assemblies as soft templates for the synthesis of titania materials with controlled crystallinity, porosity and photocatalytic activity. RSC Advances, 2014, 4, 40061-40070.	1.7	16
43	A direct novel synthesis of highly uniform dispersed ruthenium nanoparticles over P6mm ordered mesoporous carbon by host–guest complexes. Journal of Materials Chemistry A, 2014, 2, 6641-6648.	5.2	12
44	Evidence for the existence of crosslinked crystalline domains within cyclodextrin-based supramolecular hydrogels through sol–gel replication. RSC Advances, 2014, 4, 8200.	1.7	22
45	Aqueous Heck Arylation of Acrolein Derivatives: The Role of Cyclodextrin as Additive. Topics in Catalysis, 2014, 57, 1550-1557.	1.3	3
46	Investigating the effect of randomly methylated β-cyclodextrin/block copolymer molar ratio on the template-directed preparation of mesoporous alumina with tailored porosity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 80, 323-335.	0.9	9
47	Synthesis of 1,4:3,6â€Ðianhydrohexitols Diesters from the Palladiumâ€Catalyzed Hydroesterification Reaction. ChemSusChem, 2014, 7, 3157-3163.	3.6	15
48	Cyclodextrin-based systems for the stabilization of metallic(0) nanoparticles and their versatile applications in catalysis. Catalysis Today, 2014, 235, 20-32.	2.2	83
49	Effects of β-cyclodextrin introduction to zirconia supported-cobalt oxide catalysts: From molecule-ion associations to complete oxidation of formaldehyde. Applied Catalysis B: Environmental, 2013, 138-139, 381-390.	10.8	82
50	Coassembly of Block Copolymer and Randomly Methylated β-Cyclodextrin: From Swollen Micelles to Mesoporous Alumina with Tunable Pore Size. Macromolecules, 2013, 46, 5672-5683.	2.2	26
51	Hydroxypropyl-β-cyclodextrin as a versatile additive for the formation of metastable tetragonal zirconia exhibiting high thermal stability. CrystEngComm, 2013, 15, 2076-2083.	1.3	20
52	Cyclodextrins for Remediation Technologies. Environmental Chemistry for A Sustainable World, 2012, , 47-81.	0.3	12
53	Remediation technologies using cyclodextrins: an overview. Environmental Chemistry Letters, 2012, 10, 225-237.	8.3	116
54	Cyclodextrins as growth controlling agents for enhancing the catalytic activity of PVP-stabilized Ru(0) nanoparticles. Chemical Communications, 2012, 48, 3451.	2.2	35

#	Article	IF	CITATIONS
55	Rhodiumâ€catalyzed hydroformylation of unsaturated fatty esters in aqueous media assisted by activated carbon. European Journal of Lipid Science and Technology, 2012, 114, 1439-1446.	1.0	29
56	Carboxylated polymers functionalized by cyclodextrins for the stabilization of highly efficient rhodium(0) nanoparticles in aqueous phase catalytic hydrogenation. Dalton Transactions, 2012, 41, 13359.	1.6	23
57	Nanoparticleâ€Based Catalysis using Supramolecular Hydrogels. Advanced Synthesis and Catalysis, 2012, 354, 1269-1272.	2.1	40
58	Cyclodextrins adsorbed onto activated carbons: Preparation, characterization, and effect on the dispersibility of the particles in water. Journal of Colloid and Interface Science, 2012, 371, 89-100.	5.0	11
59	Scope and limitation of activated carbons in aqueous organometallic catalysis. Journal of Catalysis, 2011, 278, 208-218.	3.1	12
60	An ordered hydrophobic P6mm mesoporous carbon with graphitic pore walls and its application in aqueous catalysis. Carbon, 2011, 49, 1290-1298.	5.4	41
61	Chemically modified cyclodextrins as supramolecular tools to generate carbon-supported ruthenium nanoparticles: An application towards gas phase hydrogenation. Applied Catalysis A: General, 2011, 391, 334-341.	2.2	24
62	Cyclodextrins and their applications in aqueous-phase metal-catalyzed reactions. Comptes Rendus Chimie, 2011, 14, 149-166.	0.2	92
63	Activated Carbon as a Massâ€Transfer Additive in Aqueous Organometallic Catalysis. Chemistry - A European Journal, 2010, 16, 6138-6141.	1.7	18
64	Cyclodextrins as Mass Transfer Additives in Aqueous Organometallic Catalysis. Current Organic Chemistry, 2010, 14, 1296-1307.	0.9	41
65	Noncovalent functionalization of multiwall carbon nanotubes by methylated-β-cyclodextrins modified by a triazole group. Chemical Communications, 2010, 46, 7382.	2.2	21
66	Chemically Modified Cyclodextrins: An Attractive Class of Supramolecular Hosts for the Development of Aqueous Biphasic Catalytic Processes. Sustainability, 2009, 1, 924-945.	1.6	55
67	Carbonâ€Supported Ruthenium Nanoparticles Stabilized by Methylated Cyclodextrins: A New Family of Heterogeneous Catalysts for the Gasâ€Phase Hydrogenation of Arenes. Chemistry - A European Journal, 2008, 14, 8090-8093.	1.7	34
68	Biphasic Aqueous Organometallic Catalysis Promoted by Cyclodextrins: How to Design the Waterâ€Soluble Phenylphosphane to Avoid Interaction with Cyclodextrin. Advanced Synthesis and Catalysis, 2008, 350, 609-618.	2.1	36
69	Chemically modified cyclodextrins adsorbed on Pd/C particles: New opportunities to generate highly chemo- and stereoselective catalysts for Heck reaction. Catalysis Communications, 2008, 9, 1346-1351.	1.6	46
70	Methylated cyclodextrins: an efficient protective agent in water for zerovalent ruthenium nanoparticles and a supramolecular shuttle in alkene and arene hydrogenation reactions. Dalton Transactions, 2007, , 5714.	1.6	65
71	Solubilisation of chlorinated solvents by cyclodextrin derivativesA study by static headspace gas chromatography and molecular modelling. Journal of Hazardous Materials, 2007, 141, 92-97.	6.5	42
72	Catalytic hydrogen storage in cerium nickel and zirconium (or aluminium) mixed oxides. International Journal of Hydrogen Energy, 2007, 32, 2439-2444.	3.8	30

#	Article	IF	CITATIONS
73	Unexpected Multifunctional Effects of Methylated Cyclodextrins in a Palladium Charcoal-Catalyzed Suzukiâ 'Miyaura Reaction. Organic Letters, 2006, 8, 4823-4826.	2.4	58
74	Host–guest inclusion complexes between peracetylated β-cyclodextrin and diphenyl(4-phenylphenyl)phosphine: Computational studies. Computational and Theoretical Chemistry, 2006, 777, 99-106.	1.5	27
75	Eco-efficient Catalytic Hydrodechlorination of Carbon Tetrachloride in Aqueous Cyclodextrin Solutions. Catalysis Letters, 2006, 108, 209-214.	1.4	13
76	Peracetylated β-cyclodextrin as solubilizer of arylphosphines in supercritical carbon dioxide. Journal of Supercritical Fluids, 2006, 36, 173-181.	1.6	23
77	Sulfobutyl Ether-β-Cyclodextrins: Promising Supramolecular Carriers for Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2005, 347, 1301-1307.	2.1	35
78	Complexation of Monosulfonated Triphenylphosphine with Chemically Modified β-Cyclodextrins: Effect of Substituents on the Stability of Inclusion Complexes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2005, 51, 79-85.	1.6	17
79	Molecular Recognition Between a Water-Soluble Organometallic Complex and a ?-Cyclodextrin: First Example of Second-Sphere Coordination Adducts Possessing a Catalytic Activity. Advanced Synthesis and Catalysis, 2004, 346, 1449-1456.	2.1	33
80	Cyclodextrin silica-based materials: advanced characterizations and study of their complexing behavior by diffuse reflectance UV–Vis spectroscopy. Microporous and Mesoporous Materials, 2004, 75, 261-272.	2.2	42
81	Influence of phosphate modification on the surface properties of sulfated titania. Research on Chemical Intermediates, 2003, 29, 705-719.	1.3	2
82	Title is missing!. Topics in Catalysis, 2002, 20, 65-74.	1.3	78
83	Relationship between Structure of CeNiXOY Mixed Oxides and Catalytic Properties in Oxidative Dehydrogenation of Propane. Langmuir, 2001, 17, 1511-1517.	1.6	47
84	CeNixOy and CeAlzNixOy solids studied by electron microscopy, XRD, XPS and depth sputtering techniques. Physical Chemistry Chemical Physics, 2000, 2, 303-312.	1.3	48
85	Storage of reactive hydrogen species in CeMxOy (M = Cu, Ni; 0≤â‰Â∰) mixed oxides. International Jou of Hydrogen Energy, 1999, 24, 1083-1092.	ırnal 3.8	27
86	Studies of the cerium-metal–oxygen–hydrogen system (metal=Cu, Ni). Catalysis Today, 1999, 50, 247-259.	2.2	133
87	Oxidative dehydrogenation of propane on CeNiXOY (0 ≤ ≤) mixed oxides hydrogen acceptors. Studies in Surface Science and Catalysis, 1997, , 383-392.	1.5	4
88	Effect of the sequence of potassium introduction to V2O5/TiO2 catalysts on their physicochemical properties and catalytic performance in oxidative dehydrogenation of propane. Catalysis Today, 1997, 33, 109-118.	2.2	39
89	Oxidehydrogenation of propane on MoO ₃ /gAl ₂ O ₃ hydrogen acceptor. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1997, 94, 1975-1983.	0.2	3
90	Effect of potassium addition to the TiO2 support on the structure of V2O5/TiO2 and its catalytic properties in the oxidative dehydrogenation of propane. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1609.	1.7	37

#	Article	IF	CITATIONS
91	Aqueous zirconiumâ€MOF syntheses assisted by αâ€cyclodextrin: towards deeper understanding of the beneficial role of cyclodextrin. European Journal of Inorganic Chemistry, 0, , .	1.0	3