Emmanouil M Tentzeris

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7408702/emmanouil-m-tentzeris-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

333 papers

6,765 citations

44 h-index 69 g-index

392 ext. papers

8,585 ext. citations

avg, IF

6.4 L-index

#	Paper	IF	Citations
333	Energy Autonomous Two-Way Repeater System for Non-Line-of-Sight Interrogation in Next Generation Wireless Sensor Networks. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2022 , 1-	1 ^{4.1}	1
332	Filtering Push-Pull Power Amplifier Based on Multifunctional Impedance Matching Network. <i>IEEE Microwave and Wireless Components Letters</i> , 2022 , 1-4	2.6	
331	Advances in Wirelessly Powered Backscatter Communications: From Antenna/RF Circuitry Design to Printed Flexible Electronics. <i>Proceedings of the IEEE</i> , 2022 , 110, 171-192	14.3	7
330	Uncertainty Quantification of Printed Microwave Interconnects by Use of the Sparse Polynomial Chaos Expansion Method. <i>IEEE Microwave and Wireless Components Letters</i> , 2022 , 32, 1-4	2.6	0
329	Next-Generation Healthcare: Enabling Technologies for Emerging Bioelectromagnetics Applications. <i>IEEE Open Journal of Antennas and Propagation</i> , 2022 , 3, 363-390	1.9	5
328	Tile-based massively scalable MIMO and phased arrays for 5G/B5G-enabled smart skins and reconfigurable intelligent surfaces <i>Scientific Reports</i> , 2022 , 12, 2741	4.9	2
327	In-Package Additively Manufactured Sensors for Bend Prediction and Calibration of Flexible Phased Arrays and Flexible Hybrid Electronics 2021 ,		2
326	Inkjet-/3D-/4D-Printed Nanotechnology-Enabled Radar, Sensing, and RFID Modules for Internet of Things, Bmart Skin, Land Zero Power LMedical Applications 2021 , 399-434		1
325	Flexible circularly polarized antenna with axial ratio bandwidth enhancement for off-body communications. <i>IET Microwaves, Antennas and Propagation</i> , 2021 , 15, 754-767	1.6	6
324	When a Single Chip becomes the RFID Reader: An Ultra-low-cost 60 GHz Reader and mmID System for Ultra-accurate 2D Microlocalization 2021 ,		1
323	Triple-Band Single-Layer Rectenna for Outdoor RF Energy Harvesting Applications. <i>Sensors</i> , 2021 , 21,	3.8	4
322	A novel 4-DOF wide-range tunable frequency selective surface using an origami <code>Bggbox</code> structure. <i>International Journal of Microwave and Wireless Technologies</i> , 2021 , 13, 727-733	0.8	1
321	5.8-GHz Low-Power Tunnel-Diode-Based Two-Way Repeater for Non-Line-of-Sight Interrogation of RFIDs and Wireless Sensor Networks. <i>IEEE Microwave and Wireless Components Letters</i> , 2021 , 31, 794-7	9 ^{2.6}	2
320	A printed millimetre-wave modulator and antenna array for backscatter communications at gigabit data rates. <i>Nature Electronics</i> , 2021 , 4, 439-446	28.4	10
319	Fully Inkjet Printed 60GHz Backscatter 5G RFID Modules for Sensing and Localization in Internet of Things (IoT) and Digital Twins Applications 2021 ,		1
318	Additively Manufactured RF Devices for 5G, IoT, RFID, WSN, and Smart City Applications. <i>Selected Topics in Electornics and Systems</i> , 2021 , 163-174	О	
317	5G as a wireless power grid. <i>Scientific Reports</i> , 2021 , 11, 636	4.9	14

(2020-2021)

316	A Wideband, Quasi-Isotropic, Ambient RF Energy Harvester Combining UHF-TV and FM. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2021 , 1-1	3.8	1
315	Compact 3-D-Printed 4 A Butler Matrix Based on Low-Cost and Curing-Free Additive Manufacturing. <i>IEEE Microwave and Wireless Components Letters</i> , 2021 , 31, 125-128	2.6	6
314	Digital Reconfiguration of a Single Arm 3-D Bowtie Antenna. <i>IEEE Transactions on Antennas and Propagation</i> , 2021 , 69, 4184-4188	4.9	2
313	Duco 2021 , 5, 1-25		O
312	Novel Design Framework for Dual-Band Frequency Selective Surfaces Using Multi-Variant Differential Evolution. <i>Mathematics</i> , 2021 , 9, 2381	2.3	O
311	. IEEE Internet of Things Journal, 2021 , 8, 14719-14730	10.7	2
310	Advanced Development in Packaging of Antenna-integrated Systems for Millimeter-wave Applications 2021 ,		1
309	Ultralow-Loss Substrate-Integrated Waveguides in Glass-Based Substrates for Millimeter-Wave Applications. <i>IEEE Transactions on Components, Packaging and Manufacturing Technology</i> , 2020 , 10, 531	- 5 373	7
308	A Winning Backscatter Modulator: A Quarter-Gram, Ultrahigh-Frequency RFID for On-Metal Operation. <i>IEEE Microwave Magazine</i> , 2020 , 21, 96-100	1.2	
307	Dual-Band Balanced Bandpass Filter Using Slotlines Loaded Patch Resonators With Independently Controllable Bandwidths. <i>IEEE Microwave and Wireless Components Letters</i> , 2020 , 30, 653-656	2.6	2
306	Transformation from 2D meta-pixel to 3D meta-pixel using auxetic kirigami for programmable multifunctional electromagnetic response. <i>Extreme Mechanics Letters</i> , 2020 , 36, 100670	3.9	16
305	Additive Manufacturing AiP Designs and Applications 2020 , 267-291		
304	RFID Based Non-Contact Human Activity Detection Exploiting Cross Polarization. <i>IEEE Access</i> , 2020 , 8, 46585-46595	3.5	8
303	Wearable Antennas for Cross-Body Communication and Human Activity Recognition. <i>IEEE Access</i> , 2020 , 8, 58575-58584	3.5	11
302	Gain-Enhanced Metamaterial Absorber-Loaded Monopole Antenna for Reduced Radar Cross-Section and Back Radiation. <i>Materials</i> , 2020 , 13,	3.5	4
301	Notice of Retraction: Comments on A Modified Gysel Power Divider of Arbitrary Power Ratio and Real Termination Impedances [IEEE Microwave and Wireless Components Letters, 2020, 30, 621-623]	2.6	
300	Rotman Lens-Based Wide Angular Coverage and High-Gain Semipassive Architecture for Ultralong Range mm-Wave RFIDs. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2020 , 19, 1943-1947	3.8	14
299	Machine Learning Approach for Wirelessly Powered RFID-Based Backscattering Sensor System. IEEE Journal of Radio Frequency Identification, 2020, 4, 186-194	2.4	4

298	A Bidirectional Absorptive Common-Mode Filter Based on Interdigitated Microstrip Coupled Lines for 5G Green Communications. <i>IEEE Access</i> , 2020 , 8, 20759-20769	3.5	11
297	A Novel Compact Isolation Circuit Suitable for Ultracompact and Wideband Marchand Baluns. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2020 , 67, 2299-2303	3.5	3
296	Additively Manufactured mm-Wave Multichip Modules With Fully Printed BmartŒncapsulation Structures. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2020 , 68, 2716-2724	4.1	17
295	Novel coated differentially fed dual-band fractal antenna for implantable medical devices. <i>IET Microwaves, Antennas and Propagation</i> , 2020 , 14, 199-208	1.6	6
294	Ambient FM Backscattering Low-Cost and Low-Power Wireless RFID Applications 2020, 117-143		
293	Foreign Object Detection for Wireless Power Transfer Based on Machine Learning 2020,		3
292	. IEEE Microwave Magazine, 2020 , 21, 87-103	1.2	13
291	Additively Manufactured RF Devices for 5G, IoT, RFID, WSN, and Smart City Applications. International Journal of High Speed Electronics and Systems, 2020 , 29, 2040016	0.5	
290	Compact dual-band filtering power divider with independently controllable bandwidths using shorted patch resonators. <i>IET Microwaves, Antennas and Propagation</i> , 2020 , 14, 759-767	1.6	4
289	Coupled Lines for Wearable Power Dividers: Coupled Transmission-Line Sections for Power Dividers in Wearable and Flexible RF Electronics. <i>IEEE Microwave Magazine</i> , 2020 , 21, 66-87	1.2	3
288	A Wideband, Quasi-Isotropic, Kilometer-Range FM Energy Harvester for Perpetual IoT. <i>IEEE Microwave and Wireless Components Letters</i> , 2020 , 30, 201-204	2.6	6
287	CSRR Based Sensors for Relative Permittivity Measurement With Improved and Uniform Sensitivity Throughout [0.9¶0.9] GHz Band. <i>IEEE Sensors Journal</i> , 2020 , 20, 4667-4678	4	23
286	A Compact Sourcelload Agnostic Flexible Rectenna Topology for IoT Devices. <i>IEEE Transactions on Antennas and Propagation</i> , 2020 , 68, 2621-2629	4.9	19
285	. IEEE Transactions on Microwave Theory and Techniques, 2020 , 1-1	4.1	9
284	Filtering rat-race couplers with impedance transforming characteristics based on terminated coupled line structures. <i>IET Microwaves, Antennas and Propagation</i> , 2020 , 14, 734-742	1.6	4
283	. IEEE Microwave Magazine, 2020 , 21, 53-64	1.2	1
282	Package-Integrated, Wideband Power Dividing Networks and Antenna Arrays for 28-GHz 5G New Radio Bands. <i>IEEE Transactions on Components, Packaging and Manufacturing Technology</i> , 2020 , 10, 1515	5 ⁻¹ 7523	3 ¹¹
281	RF Systems on Antenna (SoA): a Novel Integration Approach Enabled by Additive Manufacturing 2020 ,		2

(2019-2020)

280	3D Printed One-shot Deployable Flexible KirigamilDielectric Reflectarray Antenna for mm-Wave Applications 2020 ,		4
279	Broadband and Miniaturized Antenna-in-Package (AiP) Design for 5G Applications. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2020 , 19, 1963-1967	3.8	8
278	3D-Printed Omnidirectional Luneburg Lens Retroreflectors for Low-Cost mm-Wave Positioning 2020 ,		4
277	Chipless RFID Sensor Tag for Angular Velocity and Displacement Measurement 2019,		1
276	Read/Interrogation Enhancement of Chipless RFIDs Using Machine Learning Techniques. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2019 , 18, 2272-2276	3.8	5
275	2019,		7
274	Notice of Retraction: Comments on A Theorem on Asymmetric Structure Based Rat-Race Coupler <i>IEEE Microwave and Wireless Components Letters</i> , 2019 , 29, 696-698	2.6	3
273	Range-adaptive Impedance Matching of Wireless Power Transfer System Using a Machine Learning Strategy Based on Neural Networks 2019 ,		3
272	Novel Additively Manufactured Packaging Approaches for 5G/mm-Wave Wireless Modules 2019,		2
271	Longitudinally Misalignment-Insensitive Dual-Band Wireless Power and Data Transfer Systems for a Position Detection of Fast-Moving Vehicles. <i>IEEE Transactions on Antennas and Propagation</i> , 2019 , 67, 5614-5622	4.9	14
270	Fully Inkjet-printed Multi-layer Tunable Origami FSS Structures with Integrated Thermal Actuation Mechanism 2019 ,		3
269	Novel 3D-Printed Reconfigurable Origami Frequency Selective Surfaces With Flexible Inkjet-Printed Conductor Traces 2019 ,		12
268	Achieving Fully Autonomous System-on-Package Designs: An Embedded-on-Package 5G Energy Harvester within 3D Printed Multilayer Flexible Packaging Structures 2019 ,		11
267	A Real-Time Range-Adaptive Impedance Matching Utilizing a Machine Learning Strategy Based on Neural Networks for Wireless Power Transfer Systems. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2019 , 67, 5340-5347	4.1	13
266	Bi-Directional Loop Antenna Array Using Magic Cube Origami. Sensors, 2019 , 19,	3.8	4
265	A Rectifier Circuit Insensitive to the Angle of Incidence of Incoming Waves Based on a Wilkinson Power Combiner. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2019 , 67, 3210-3218	4.1	12
264	Wide frequency switchable microwave resonator by injecting eutectic gallium indium into microfluidic defected ground structure. <i>Microwave and Optical Technology Letters</i> , 2019 , 61, 2405-2409	1.2	
263	Notice of Retraction: Comments on A Universal Approach for Designing an Unequal Branch-Line		

262	. IEEE Access, 2019 , 7, 39288-39298	3.5	6
261	In-Phase T-Junction: Study and Application to Gysel Power Dividers for High Power-Division Ratios Requiring No High-Impedance Transmission-Line Section. <i>IEEE Access</i> , 2019 , 7, 18146-18154	3.5	15
260	A Quadruple-Polarization Reconfigurable Feeding Network for UAV RF Sensing Antenna. <i>IEEE Microwave and Wireless Components Letters</i> , 2019 , 29, 183-185	2.6	7
259	Compact and Wideband General Coupled-Line Ring Hybrids (GCRHs) for Arbitrary Circumferences and Arbitrary Power-Division Ratios. <i>IEEE Access</i> , 2019 , 7, 33414-33423	3.5	10
258	. IEEE Transactions on Microwave Theory and Techniques, 2019 , 67, 978-987	4.1	12
257	. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019 , 9, 80-87	1.7	4
256	3-D-Printing-Based Selective-Ink-Deposition Technique Enabling Complex Antenna and RF Structures for 5G Applications up to 6 GHz. <i>IEEE Transactions on Components, Packaging and Manufacturing Technology</i> , 2019 , 9, 1434-1447	1.7	6
255	Notice of Retraction: Comments on Novel Sub-Miniaturized Wilkinson Power Divider Based on Small Phase Delay [I] IEEE Microwave and Wireless Components Letters, 2019, 29, 439-439	2.6	3
254	Ultra-Compact and Wideband V(U)HF 3-dB Power Dividers Consisting of Novel Asymmetric Impedance Transformers. <i>IEEE Access</i> , 2019 , 7, 76367-76375	3.5	3
253	A Scalable High-Gain and Large-Beamwidth mm-wave Harvesting Approach for 5G-powered IoT 2019 ,		15
253 252			15 4
	2019,		<u> </u>
252	2019, Low Cost Ambient Backscatter for Agricultural Applications 2019,	3.5	4
252 251	Low Cost Ambient Backscatter for Agricultural Applications 2019, 3D Printed 2.45 GHz Yagi-Uda Loop Antenna Utilizing Microfluidic Channels and Liquid Metal 2019,	3.5	4
252 251 250	Low Cost Ambient Backscatter for Agricultural Applications 2019, 3D Printed 2.45 GHz Yagi-Uda Loop Antenna Utilizing Microfluidic Channels and Liquid Metal 2019, Optically Transparent Metamaterial Absorber Using Inkjet Printing Technology. <i>Materials</i> , 2019, 12, Balanced-to-unbalanced power dividers for arbitrary power division ratios and forarbitrary real		2 2 3
252 251 250 249	Low Cost Ambient Backscatter for Agricultural Applications 2019, 3D Printed 2.45 GHz Yagi-Uda Loop Antenna Utilizing Microfluidic Channels and Liquid Metal 2019, Optically Transparent Metamaterial Absorber Using Inkjet Printing Technology. Materials, 2019, 12, Balanced-to-unbalanced power dividers for arbitrary power division ratios and forarbitrary real termination impedances. IET Microwaves, Antennas and Propagation, 2019, 13, 904-910 Guest Editorial Special Issue on Intrinsic Hardware Security for Internet of Things Infrastructure.	1.6	2 2 3
252 251 250 249 248	Low Cost Ambient Backscatter for Agricultural Applications 2019, 3D Printed 2.45 GHz Yagi-Uda Loop Antenna Utilizing Microfluidic Channels and Liquid Metal 2019, Optically Transparent Metamaterial Absorber Using Inkjet Printing Technology. Materials, 2019, 12, Balanced-to-unbalanced power dividers for arbitrary power division ratios and forarbitrary real termination impedances. IET Microwaves, Antennas and Propagation, 2019, 13, 904-910 Guest Editorial Special Issue on Intrinsic Hardware Security for Internet of Things Infrastructure. IEEE Internet of Things Journal, 2019, 6, 321-324 3D Glass-Based Panel-Level Package with Antenna and Low-Loss Interconnects for Millimeter-Wave	1.6	4 2 2 3

244	Fully Inkjet-printed Tunable Hybrid n-Ripple Miura (n-RiM) Frequency Selective Surfaces 2019 ,		1
243	2019,		4
242	Miniaturized Millimeter Wave RFID Tag for Spatial Identification and Localization in Internet of Things Applications 2019 ,		7
241	Nanotechnology-Empowered Flexible Printed Wireless Electronics: A Review of Various Applications of Printed Materials. <i>IEEE Nanotechnology Magazine</i> , 2019 , 13, 18-29	1.7	12
240	Notice of Retraction: Comments on Coupling Coefficient Reconfigurable Wideband Branch-Line Coupler Topology With Harmonic Suppression [IIEEE Transactions on Microwave Theory and Techniques, 2019, 67, 834-834	4.1	
239	A Deployable Quasi-Yagi Monopole Antenna Using Three Origami Magic Spiral Cubes. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2019 , 18, 147-151	3.8	15
238	77-GHz mmWave antenna array on liquid crystal polymer for automotive radar and RF front-end module. <i>ETRI Journal</i> , 2019 , 41, 262-269	1.4	3
237	Planar quasi-isotropic antenna for drone communication. <i>Microwave and Optical Technology Letters</i> , 2018 , 60, 1290-1295	1.2	4
236	Exploring 3-D Printing for New Applications: Novel Inkjet- and 3-D-Printed Millimeter-Wave Components, Interconnects, and Systems. <i>IEEE Microwave Magazine</i> , 2018 , 19, 57-66	1.2	23
235	Parylene coated waterproof washable inkjet-printed dual-band antenna on paper substrate. <i>International Journal of Microwave and Wireless Technologies</i> , 2018 , 10, 814-818	0.8	7
234	. IEEE Transactions on Microwave Theory and Techniques, 2018 , 66, 366-379	4.1	111
233	A uW Backscatter-Morse-Leaf Sensor for Low-Power Agricultural Wireless Sensor Networks. <i>IEEE Sensors Journal</i> , 2018 , 18, 7889-7898	4	49
232	The Principles of "Smart" Encapsulation: Using Additive Printing Technology for the Realization of Intelligent Application-Specific Packages for IoT, 5G, and Automotive Radar Applications 2018 ,		5
231	Novel 3D-/Inkjet-Printed Flexible On-package Antennas, Packaging Structures, and Modules for Broadband 5G Applications 2018 ,		8
230	A Novel Integration of Stereolithography and Inkjet Printing for Multichip Modules with High Frequency Packaging Applications 2018 ,		3
229	Miniaturized High-Performance Filters for 5G Small-Cell Applications 2018,		14
228	Leading-Edge and Ultra-Thin 3D Glass-Polymer 5G Modules with Seamless Antenna-to-Transceiver Signal Transmissions 2018 ,		17
227	Stretchable, Printable and Electrically Conductive Composites for Wearable RF Antennas 2018,		5

226	Radar & additive manufacturing technologies: The future of Internet of Things (IoT) 2018,		5
225	A Depolarizing Chipless RFID Tag with Humidity Sensing Capability 2018,		10
224	Nanotechnology-Enabled Additively-Manufactured RF and Millimeter-wave Electronics 2018,		2
223	Four-PAM Modulation of Ambient FM Backscattering for Spectrally Efficient Low-Power Applications. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2018 , 66, 5909-5921	4.1	17
222	Fully Inkjet-Printed Ramp Interconnects for Wireless Ka-Band MMIC Devices and Multi-Chip Module Packaging 2018 ,		10
221	First Demonstration of Compact, Ultra-Thin Low-Pass and Bandpass Filters for 5G Small-Cell Applications. <i>IEEE Microwave and Wireless Components Letters</i> , 2018 , 28, 1110-1112	2.6	31
220	Continuous-range tunable multilayer frequency-selective surfaces using origami and inkjet printing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 13210-1321	5 ^{11.5}	50
219	Spectrally Efficient 4-PAM Ambient FM Backscattering for Wireless Sensing and RFID Applications 2018 ,		6
218	Smart Floating Balls: 3D Printed Spherical Antennas and Sensors for Water Quality Monitoring 2018 ,		3
217	n-RiM: A Paradigm Shift in the Realization of Fully Inkjet-printed Broadband Tunable FSS using Origami Structures 2018 ,		3
216	A Fully 3D Printed Multi-Chip Module with an On-Package Enhanced Dielectric Lens for mm-Wave Applications Using Multimaterial Stereo-lithography 2018 ,		4
215	Expand Horizons of Microfluidic Systems: An Inkjet Printed Flexible Energy Autonomous Micropump System for Wearable and IoT Microfluidic Applications 2018 ,		2
214	Frequency-Tunable Electromagnetic Absorber by Mechanically Controlling Substrate Thickness. <i>International Journal of Antennas and Propagation</i> , 2018 , 2018, 1-7	1.2	3
213	Low-cost metamaterial absorber using three-dimensional circular truncated cone. <i>Microwave and Optical Technology Letters</i> , 2018 , 60, 1622-1630	1.2	14
212	Novel Generic Asymmetric and Symmetric Equivalent Circuits of 90 th Coupled Transmission-Line Sections Applicable to Marchand Baluns. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2017 , 65, 746-760	4.1	16
211	Printed Motes for IoT Wireless Networks: State of the Art, Challenges, and Outlooks. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2017 , 65, 1819-1830	4.1	12
210	A Novel Solar and Electromagnetic Energy Harvesting System With a 3-D Printed Package for Energy Efficient Internet-of-Things Wireless Sensors. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2017 , 65, 1831-1842	4.1	89
209	. Proceedings of the IEEE, 2017 , 105, 702-722	14.3	36

(2017-2017)

208	Low-Cost Circularly Polarized Origami Antenna. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2017 , 16, 2026-2029	3.8	22	
207	Octave and Decade Printed UWB Rectifiers Based on Nonuniform Transmission Lines for Energy Harvesting. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2017 , 65, 4326-4334	4.1	49	
206	Inkjet-printed 3D Hilbert-curve fractal antennas for VHF band. <i>Microwave and Optical Technology Letters</i> , 2017 , 59, 1698-1704	1.2	4	
205	A fully autonomous ultra-low power hybrid RF/photovoltaic energy harvesting system with 2 5 dBm sensitivity 2017 ,		3	
204	Design of a novel wireless power system using machine learning techniques for drone applications 2017 ,		10	
203	A Novel Heuristic Passive and Active Matching Circuit Design Method for Wireless Power Transfer to Moving Objects. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2017 , 65, 1094-1102	4.1	12	
202	E-band characterization of 3D-printed dielectrics for fully-printed millimeter-wave wireless system packaging 2017 ,		19	
201	A Mm-wave ultra-long-range energy-autonomous printed RFID-enabled van-atta wireless sensor: At the crossroads of 5G and IoT 2017 ,		27	
200	Novel uniquely 3D printed intricate Voronoi and fractal 3D antennas 2017,		9	
199	Ambient FM backscattering for smart agricultural monitoring 2017,		17	
198	Sensitivity enhancement of flexible gas sensors via conversion of inkjet-printed silver electrodes into porous gold counterparts. <i>Scientific Reports</i> , 2017 , 7, 8988	4.9	25	
197	First Demonstration of 28 GHz and 39 GHz Transmission Lines and Antennas on Glass Substrates for 5G Modules 2017 ,		23	
196	Ambient Backscatterers Using FM Broadcasting for Low Cost and Low Power Wireless Applications. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2017 , 65, 5251-5262	4.1	35	
195	Millimeter-wave ink-jet printed RF energy harvester for next generation flexible electronics 2017,		18	
194	High-Performance RF Devices and Components on Flexible Cellulose Substrate by Vertically Integrated Additive Manufacturing Technologies. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2017 , 65, 62-71	4.1	25	
193	A Novel High-Gain Tetrahedron Origami. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2017 , 16, 848	-8 <u>\$</u> .8	17	
192	A Novel Wideband Compact Microstrip Coupled-Line Ring Hybrid for Arbitrarily High Power-Division Ratios. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2017 , 64, 630-634	3.5	15	
191	. IEEE Transactions on Microwave Theory and Techniques, 2017 , 65, 5345-5354	4.1	14	

190	Long range wireless interrogation of passive humidity sensors using Van-Atta cross-polarization effect and 3D beam scanning analysis 2017 ,		7
189	Novel 3D-printed Chinese fanlbow-tie antennas for origami/shape-changing configurations 2017,		6
188	Nanostructured miniaturized artificial magnetic conductors (AMC) for high-performance antennas in 5G, IoT, and smart skin applications 2017 ,		12
187	A novel ultra-thin flexible metamaterial absorber for human body protection from EMF hazards 2017 ,		2
186	Novel 3D printed liquid-metal-alloy microfluidics-based zigzag and helical antennas for origami reconfigurable antenna B rees [2017 ,		20
185	Inkjet-printed ADILunable spatial filters using on-demand foldable surfaces 2017,		10
184	Millimeter-wave backscatter: A quantum leap for gigabit communication, RF sensing, and wearables 2017 ,		24
183	Inkjet printed 24 GHz rectenna on paper for millimeter wave identification and wireless power transfer applications 2017 ,		8
182	On-package mm-wave FSS integration with 3D-printed encapsulation 2017 ,		3
181	. IEEE Transactions on Microwave Theory and Techniques, 2017 , 65, 5389-5400	4.1	21
180	A novel additive-manufactured multiple-infill ultra-lightweight cavity-backed slot antenna for UWB applications 2017 ,		4
179	A Planar Windmill-Like Broadband Antenna Equipped With Artificial Magnetic Conductor for Off-Body Communications. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2016 , 15, 64-67	3.8	38
178	Fabrication of microstrip patch antenna using novel hybrid printing technology. <i>Microwave and Optical Technology Letters</i> , 2016 , 58, 2602-2606	1.2	2
177	Software-defined reader for multi-modal RFID sensing 2016 ,		2
176	Pulse shaping for backscatter radio 2016 ,		7
175	Multi-domain modeling of 3D printed, nanotechnology and morphing/origami-based RF modules 2016 ,		1
174	Substrate-independent system-on-package antenna integration with inkjet printing 2016,		1
173	Heuristic passive and active matching circuit design method for wireless power transfer for moving objects 2016 ,		5

3D printed reconfigurable helical antenna based on microfluidics and liquid metal alloy 2016, 172 11 Inkjet-Printed Smart Skins and Wirelessly-Powered Sensors for Wearable Applications 2016, 351-374 171 A novel wideband and circularly polarized cross-dipole antenna. Wireless Communications and 170 1.9 1 Mobile Computing, **2016**, 16, 3153-3162 Inkjet-Printed Electromagnet-Based Touchpad Using Spiral Resonators. Journal of 169 16 2.5 Microelectromechanical Systems, 2016, 25, 947-953 Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics 168 4.9 74 fabrication with numerous electrical and sensing applications. Scientific Reports, 2016, 6, 35111 Additive manufacturing of substrate integrated waveguide components 2016, 167 4 Inkjet Printed High-Q RF Inductors on Paper Substrate With Ferromagnetic Nanomaterial. IEEE 166 2.6 18 Microwave and Wireless Components Letters, 2016, 26, 419-421 Guest Editorial Special Issue on Radio-Frequency Identification (RFID), Sensing, and Imaging. IEEE 165 4.1 Transactions on Microwave Theory and Techniques, 2016, 64, 2292-2293 Notice of Retraction: Comments on Dn-Chip Miniaturized Diplexer Using Joint Dual-Mode Right-/Left-Handed Synthesized Coplanar Waveguides on GIPD Process^[] / IEEE Microwave and 2.6 164 2 Wireless Components Letters, 2016, 26, 380-382 Inkjet Printing of Multilayer Millimeter-Wave Yagi-Uda Antennas on Flexible Substrates. IEEE 163 3.8 61 Antennas and Wireless Propagation Letters, 2016, 15, 143-146 A Real-Time Electrically Controlled Active Matching Circuit Utilizing Genetic Algorithms for Wireless Power Transfer to Biomedical Implants. IEEE Transactions on Microwave Theory and 162 4.1 38 Techniques, 2016, 64, 365-374 Fabrication of Fully Inkjet-Printed Vias and SIW Structures on Thick Polymer Substrates. IEEE 161 1.7 37 Transactions on Components, Packaging and Manufacturing Technology, 2016, 6, 486-496 Infill-Dependent 3-D-Printed Material Based on NinjaFlex Filament for Antenna Applications. IEEE 160 3.8 78 Antennas and Wireless Propagation Letters, 2016, 15, 1506-1509 Development, characterization, and processing of thin and thick inkjet-printed dielectric films. 159 3.5 27 Organic Electronics, 2016, 29, 135-141 A novel, facile, layer-by-layer substrate surface modification for the fabrication of all-inkjet-printed 158 7.1 16 flexible electronic devices on Kapton. Journal of Materials Chemistry C, 2016, 4, 7052-7060 Inkjet-printed substrate integrated waveguides (SIW) with <code>Brill-less</code> on paper substrates 2016 157 7 Inkjet-printed 3D interconnects for millimeter-wave system-on-package solutions 2016, 156 35 UHF lumped element model of a fully-inkjet-printed single-wall-carbon-nanotube-based 155 inter-digitated electrodes breath sensor 2016,

154	Inkjet-Printed Flexible mm-Wave Van-Atta Reflectarrays: A Solution for Ultralong-Range Dense Multitag and Multisensing Chipless RFID Implementations for IoT Smart Skins. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2016 , 64, 4763-4773	4.1	53
153	A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices. <i>Scientific Reports</i> , 2016 , 6, 39909	4.9	18
152	Pulse Shaping: The Missing Piece of Backscatter Radio and RFID. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2016 , 64, 4774-4788	4.1	29
151	3D printed substrate integrated waveguide filters with locally controlled dielectric permittivity 2016 ,		8
150	Additively Manufactured Microfluidics-Based B eel-and-Replace I RF Sensors for Wearable Applications. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2016 , 64, 1928-1936	4.1	25
149	Button-shaped radio-frequency identification tag combining three-dimensional and inkjet printing technologies. <i>IET Microwaves, Antennas and Propagation</i> , 2016 , 10, 737-741	1.6	16
148	Passive Wireless Frequency Doubling Antenna Sensor for Strain and Crack Sensing. <i>IEEE Sensors Journal</i> , 2016 , 16, 5725-5733	4	47
147	State-of-the-Art Inkjet-Printed Metal-Insulator-Metal (MIM) Capacitors on Silicon Substrate. <i>IEEE Microwave and Wireless Components Letters</i> , 2015 , 25, 13-15	2.6	16
146	A real-time electrically controlled active matching circuit utilizing genetic algorithms for biomedical WPT applications 2015 ,		4
145	A novel mode and frequency reconfigurable origami quadrifilar helical antenna 2015,		7
144	Sensitivity Modeling of an RFID-Based Strain-Sensing Antenna With Dielectric Constant Change. <i>IEEE Sensors Journal</i> , 2015 , 15, 6147-6155	4	36
143	RFID-Based Wireless Passive Sensors Utilizing Cork Materials. <i>IEEE Sensors Journal</i> , 2015 , 15, 7242-7251	4	16
142	A Novel Dual-Band, Dual-Polarized, Miniaturized and Low-Profile Base Station Antenna. <i>IEEE Transactions on Antennas and Propagation</i> , 2015 , 63, 5399-5408	4.9	101
141	Design optimization of an energy harvesting RF-DC conversion circuit operating at 2.45GHz 2015 ,		5
140	3D-Printed Origami Packaging With Inkjet-Printed Antennas for RF Harvesting Sensors. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2015 , 63, 4521-4532	4.1	86
139	Low-Cost Inkjet-Printed Fully Passive RFID Tags for Calibration-Free Capacitive/Haptic Sensor Applications. <i>IEEE Sensors Journal</i> , 2015 , 15, 3135-3145	4	39
138	Rational Design of a Printable, Highly Conductive Silicone-based Electrically Conductive Adhesive for Stretchable Radio-Frequency Antennas. <i>Advanced Functional Materials</i> , 2015 , 25, 464-470	15.6	75

(2014-2015)

136	An integrated Bense-and-communicate Droad-/narrow-band optically controlled reconfigurable antenna for cognitive radio systems. <i>Microwave and Optical Technology Letters</i> , 2015 , 57, 1016-1023	1.2	4
135	A Novel Fluid-Reconfigurable Advanced and Delayed Phase Line Using Inkjet-Printed Microfluidic Composite Right/Left-Handed Transmission Line. <i>IEEE Microwave and Wireless Components Letters</i> , 2015 , 25, 142-144	2.6	15
134	A novel printed stub-loaded square helical antenna 2015,		1
133	Ambient energy harvesting from a two-way talk radio for flexible wearable devices utilizing inkjet printing masking 2015 ,		5
132	3D/inkjet-printed origami antennas for multi-direction RF harvesting 2015,		13
131	RF characterization of 3D printed flexible materials - NinjaFlex Filaments 2015 ,		18
130	An Origami Reconfigurable Axial-Mode Bifilar Helical Antenna. <i>IEEE Transactions on Antennas and Propagation</i> , 2015 , 63, 5897-5903	4.9	74
129	Ambient RF Energy Harvesting From a Two-Way Talk Radio for Flexible Wearable Wireless Sensor Devices Utilizing Inkjet Printing Technologies. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2015 , 63, 4533-4543	4.1	48
128	Exploiting 3D printed substrate for microfluidic SIW sensor 2015 ,		9
127	A novel chipless RFID-based stretchable and wearable hand gesture sensor 2015 ,		7
126	Inkjet-printed, flexible, high performance, carbon nanomaterial based sensors for ammonia and DMMP gas detection 2015 ,		10
125	A dual-polarized triple-band MIMO antenna for WLAN/WiMAX applications 2015,		4
124	RFID-Based Sensors for Zero-Power Autonomous Wireless Sensor Networks. <i>IEEE Sensors Journal</i> , 2014 , 14, 2419-2431	4	53
123	Origami Quadrifilar Helix Antenna in UHF band 2014 ,		4
122	. Proceedings of the IEEE, 2014 , 102, 1649-1666	14.3	376
121	. Proceedings of the IEEE, 2014 , 102, 1712-1722	14.3	57
120	RF tag front-end design for uncompromised communication and harvesting 2014 ,		9
119	A novel reconfigurable origami spring antenna 2014 ,		22

118	Inkjet printing of a wideband, high gain mm-Wave Vivaldi antenna on a flexible organic substrate 2014 ,		6
117	2014,		4
116	Novel inkjet printed modules for sensing, radar and energy harvesting applications 2014,		2
115	Flexible inkjet-printed metamaterial paper absorber 2014 ,		4
114	An inkjet-printed flexible broadband multilayer SIW coupler for antenna array systems 2014,		1
113	A conformable dual-band antenna equipped with AMC for WBAN applications 2014 ,		2
112	Enhancement of RF Tag Backscatter Efficiency With Low-Power Reflection Amplifiers. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2014 , 62, 3562-3571	4.1	26
111	A novel inkjet-printed microfluidic tunable coplanar patch antenna 2014 ,		16
110	An enhanced-range RFID tag using an ambient energy powered reflection amplifier 2014,		12
109	An RFID-enabled inkjet-printed soil moisture sensor on paper for Emart lagricultural applications 2014 ,		13
108	Reconfigurable helical antenna based on an origami structure for wireless communication system 2014 ,		3
107	Ambient energy harvesting from 2-way talk-radio signals for EmartImeter and display applications 2014 ,		2
106	A novel reconfigurable origami accordion antenna 2014 ,		2
105	Optically controlled reconfigurable band-notched UWB antenna for cognitive radio systems. <i>Electronics Letters</i> , 2014 , 50, 1502-1504	1.1	22
104	A novel tunable origami accordion antenna 2014 ,		16
103	Fully inkjet-printed multilayer microstrip patch antenna for Ku-band applications 2014,		9
102	A novel optically controlled reconfigurable antenna for cognitive radio systems 2014,		7
101	Harvesting wireless signals from two-way talk-radios to power smart meters and displays 2014,		1

(2013-2013)

100	Development of a directional dual-band planar antenna for wireless applications. <i>IET Microwaves, Antennas and Propagation</i> , 2013 , 7, 245-250	1.6	7
99	Multilayer Inkjet Printing of Millimeter-Wave Proximity-Fed Patch Arrays on Flexible Substrates. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2013 , 12, 1351-1354	3.8	59
98	Multi-Layer RF Capacitors on Flexible Substrates Utilizing Inkjet Printed Dielectric Polymers. <i>IEEE Microwave and Wireless Components Letters</i> , 2013 , 23, 353-355	2.6	89
97	Wireless power transfer to mobile wearable device via resonance magnetic 2013,		10
96	A dual-band retrodirective reflector array on paper utilizing Substrate Integrated Waveguide (SIW) and inkjet printing Technologies for Chipless RFID Tag and Sensor Applications 2013 ,		1
95	Inkjet catalyst printing and electroless copper deposition for low-cost patterned microwave passive devices on paper. <i>Electronic Materials Letters</i> , 2013 , 9, 669-676	2.9	40
94	An Inkjet-Printed Microfluidic RFID-Enabled Platform for Wireless Lab-on-Chip Applications. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2013 , 61, 4714-4723	4.1	69
93	Ambient RF Energy Harvesting Sensor Device With Capacitor-Leakage-Aware Duty Cycle Control. <i>IEEE Sensors Journal</i> , 2013 , 13, 2973-2983	4	78
92	Automated Identification of Plywood Using Embedded Inkjet-Printed Passive UHF RFID Tags. <i>IEEE Transactions on Automation Science and Engineering</i> , 2013 , 10, 796-806	4.9	14
91	A Shared-Aperture Dual-Band Planar Array With Self-Similar Printed Folded Dipoles. <i>IEEE Transactions on Antennas and Propagation</i> , 2013 , 61, 606-613	4.9	49
90	E-WEHP: A Batteryless Embedded Sensor-Platform Wirelessly Powered From Ambient Digital-TV Signals. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2013 , 61, 2491-2505	4.1	135
89	No Battery Required: Perpetual RFID-Enabled Wireless Sensors for Cognitive Intelligence Applications. <i>IEEE Microwave Magazine</i> , 2013 , 14, 66-77	1.2	63
88	A novel inkjet-printed chipless RFID-based passive fluid sensor platform 2013,		1
87	A cavity-backed slot antenna with high upper hemisphere efficiency for sewer sensor network 2013 ,		2
86	A novel dual-band retro-directive reflector array on paper utilizing Substrate Integrated Waveguide (SIW) and inkjet printing technologies for chipless RFID tag and sensor applications 2013 ,		7
85	Inkjet-printed antennas, sensors and circuits on paper substrate. <i>IET Microwaves, Antennas and Propagation</i> , 2013 , 7, 858-868	1.6	69
84	Preparation of Water-Based Carbon Nanotube Inks and Application in the Inkjet Printing of Carbon Nanotube Gas Sensors. <i>Journal of Electronic Packaging, Transactions of the ASME</i> , 2013 , 135,	2	15
83	Inkjet Printing of Radio Frequency Electronics: Design Methodologies and Application of Novel Nanotechnologies. <i>Journal of Electronic Packaging, Transactions of the ASME</i> , 2013 , 135,	2	5

82	A Compact Dual-Band Rectenna Using Slot-Loaded Dual Band Folded Dipole Antenna. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2013 , 12, 1634-1637	3.8	138
81	Inkjet-printed RFID-enabled sensors on paper for IoT and Bmart SkinDapplications 2013,		7
80	A novel inkjet-printed passive microfluidic RFID-based sensing platform 2013,		6
79	A self-sustaining, autonomous, wireless-sensor beacon powered from long-range, ambient, RF energy 2013 ,		2
78	A miniaturized wearable high gain and wideband inkjet-printed AMC antenna 2013,		3
77	MIMO Antenna Design and Channel Modeling 2013. <i>International Journal of Antennas and Propagation</i> , 2013 , 2013, 1-2	1.2	
76	An Inkjet-Printed Solar-Powered Wireless Beacon on Paper for Identification and Wireless Power Transmission Applications. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2012 , 60, 4178-4186	4.1	34
75	Dual-Band Antennas for Frequency-Doubler-Based Wireless Strain Sensing. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2012 , 11, 216-219	3.8	13
74	Flexible spiral antenna with microstrip tapered infinite balun for wearable applications 2012,		4
73	Towards a Smart Wireless Integrated Module (SWIM) on flexible organic substrates using inkjet printing technology for wireless sensor networks 2012 ,		7
7 2	A battery-less, energy harvesting device for long range scavenging of wireless power from terrestrial TV broadcasts 2012 ,		40
71	Wearable biomonitoring monopole antennas using inkjet printed electromagnetic band gap structures 2012 ,		4
70	Optimal Design Parameters for Wireless Power Transfer by Resonance Magnetic. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2012 , 11, 1390-1393	3.8	33
69	Wireless strain and crack sensing using a folded patch antenna 2012 ,		13
68	Multipacket reception MAC schemes for the RFID EPC Gen2 protocol 2012 ,		2
67	Graphene enhanced wireless sensors 2012 ,		6
66	Flexible Substrate Antennas. International Journal of Antennas and Propagation, 2012, 2012, 1-2	1.2	9
65	Inkjet printed ultra wideband spiral antenna using integrated balun on liquid crystal polymer (LCP) 2012 ,		4

64	Ambient-RF-energy-harvesting sensor node with capacitor-leakage-aware duty cycle control 2012,		3
63	Increasing performance of SDR-based collision-free RFID systems 2012,		2
62	A novel graphene-based inkjet-printed WISP-enabled wireless gas sensor 2012,		6
61	A battery-less, wireless mote for scavenging wireless power at UHF (470🛭 70 MHz) frequencies 2011 ,		10
60	A Scalable Solar Antenna for Autonomous Integrated Wireless Sensor Nodes. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2011 , 10, 510-513	3.8	26
59	Carbon-Nanotube Loaded Antenna-Based Ammonia Gas Sensor. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2011 , 59, 2665-2673	4.1	91
58	A Novel Multiband Planar Antenna for GSM/UMTS/LTE/Zigbee/RFID Mobile Devices. <i>IEEE Transactions on Antennas and Propagation</i> , 2011 , 59, 4209-4214	4.9	54
57	RF Fingerprinting Physical Objects for Anticounterfeiting Applications. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2011 , 59, 504-514	4.1	41
56	A New Contactless Assembly Method for Paper Substrate Antennas and UHF RFID Chips. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2011 , 59, 627-637	4.1	40
55	Review of technologies for low-cost integrated sensors 2011 ,		7
55 54	Review of technologies for low-cost integrated sensors 2011, Concealable, low-cost paper-printed antennas for WISP-based RFIDs 2011,		7
		3.6	
54	Concealable, low-cost paper-printed antennas for WISP-based RFIDs 2011 , Passive wireless smart-skin sensor using RFID-based folded patch antennas. <i>International Journal of</i>	3.6	12
54 53	Concealable, low-cost paper-printed antennas for WISP-based RFIDs 2011 , Passive wireless smart-skin sensor using RFID-based folded patch antennas. <i>International Journal of Smart and Nano Materials</i> , 2011 , 2, 22-38	3.6 3.8	12 67
54 53 52	Concealable, low-cost paper-printed antennas for WISP-based RFIDs 2011, Passive wireless smart-skin sensor using RFID-based folded patch antennas. <i>International Journal of Smart and Nano Materials</i> , 2011, 2, 22-38 RFDNA: A wireless authentication system on flexible substrates 2011, Integrated Wideband 2-D and 3-D Transitions for Millimeter-Wave RF Front-Ends. <i>IEEE Antennas</i>		12 67 3
54 53 52 51	Concealable, low-cost paper-printed antennas for WISP-based RFIDs 2011, Passive wireless smart-skin sensor using RFID-based folded patch antennas. International Journal of Smart and Nano Materials, 2011, 2, 22-38 RFDNA: A wireless authentication system on flexible substrates 2011, Integrated Wideband 2-D and 3-D Transitions for Millimeter-Wave RF Front-Ends. IEEE Antennas and Wireless Propagation Letters, 2010, 9, 1080-1083 [hkjet-printed paper/polymer-based green[RFID and wireless sensor nodes: The final step to		12 67 3
54 53 52 51 50	Concealable, low-cost paper-printed antennas for WISP-based RFIDs 2011, Passive wireless smart-skin sensor using RFID-based folded patch antennas. International Journal of Smart and Nano Materials, 2011, 2, 22-38 RFDNA: A wireless authentication system on flexible substrates 2011, Integrated Wideband 2-D and 3-D Transitions for Millimeter-Wave RF Front-Ends. IEEE Antennas and Wireless Propagation Letters, 2010, 9, 1080-1083 [hkjet-printed paper/polymer-based green[RFID and wireless sensor nodes: The final step to bridge cognitive intelligence, nanotechnology and RF?[2010,		12 67 3

46	Equivalent-Circuit Analysis of a Broadband Printed Dipole With Adjusted Integrated Balun and an Array for Base Station Applications. <i>IEEE Transactions on Antennas and Propagation</i> , 2009 , 57, 2180-218	4 ^{4.9}	113
45	Design and Development of a Novel 3-D Cubic Antenna for Wireless Sensor Networks (WSNs) and RFID Applications. <i>IEEE Transactions on Antennas and Propagation</i> , 2009 , 57, 3293-3299	4.9	75
44	UWB Elliptical Monopoles With a Reconfigurable Band Notch Using MEMS Switches Actuated Without Bias Lines. <i>IEEE Transactions on Antennas and Propagation</i> , 2009 , 57, 2242-2251	4.9	109
43	Effect of Permittivity and Permeability of a Flexible Magnetic Composite Material on the Performance and Miniaturization Capability of Planar Antennas for RFID and Wearable Wireless Applications. <i>IEEE Transactions on Components and Packaging Technologies</i> , 2009 , 32, 849-858		20
42	Paper-Based RFID-Enabled Wireless Platforms for Sensing Applications. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2009 , 57, 1370-1382	4.1	89
41	Design, Development and Integration of Novel Antennas for Miniaturized UHF RFID Tags. <i>IEEE Transactions on Antennas and Propagation</i> , 2009 , 57, 3450-3457	4.9	23
40	A Printed Log-Periodic Koch-Dipole Array (LPKDA). <i>IEEE Antennas and Wireless Propagation Letters</i> , 2008 , 7, 456-460	3.8	91
39	A Low-Loss Substrate-Independent Approach for 60-GHz Transceiver Front-End Integration Using Micromachining Technologies. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2008 , 56, 2779-27	7 8 8	17
38	Development of a Cavity-Backed Broadband Circularly Polarized Slot/Strip Loop Antenna With a Simple Feeding Structure. <i>IEEE Transactions on Antennas and Propagation</i> , 2008 , 56, 312-318	4.9	48
37	A Novel Low-Profile Broadband Dual-Frequency Planar Antenna for Wireless Handsets. <i>IEEE Transactions on Antennas and Propagation</i> , 2008 , 56, 1155-1162	4.9	40
36	Design, integration and characterization of a novel paper-based wireless sensor module 2008,		8
35	Conformal Magnetic Composite RFID for Wearable RF and Bio-Monitoring Applications. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2008 , 56, 3223-3230	4.1	46
34	A Novel Single-Feed Circular Microstrip Antenna With Reconfigurable Polarization Capability. <i>IEEE Transactions on Antennas and Propagation</i> , 2008 , 56, 630-638	4.9	128
33	3D packaging architecture using paper as a dielectric medium 2008 ,		1
32	Design and development of the first entirely paper-based wireless sensor module 2008,		4
31	Low Cost Inkjet-printing Paper-Based Modules for RFID Sensing and Wireless Applications 2008,		4
30	A micromachined airflow sensor based on RF evanescent-mode cavity resonator 2008,		1
29	Wearable RFID-enabled sensor nodes for biomedical applications 2008,		4

28	MEMS Integrated and Micromachined Antenna Elements, Arrays, and Feeding Networks 2008 , 829-865		1
27	Design and Characterization of Novel Paper-based Inkjet-Printed RFID and Microwave Structures for Telecommunication and Sensing Applications 2007 ,		11
26	The Application of Lumped Element Equivalent Circuits Approach to the Design of Single-Port Microstrip Antennas. <i>IEEE Transactions on Antennas and Propagation</i> , 2007 , 55, 2468-2472	4.9	11
25	Multilayer Effects on Microstrip Antennas for Their Integration With Mechanical Structures. <i>IEEE Transactions on Antennas and Propagation</i> , 2007 , 55, 1051-1058	4.9	40
24	Flexible LCP and Paper-based Substrates with Embedded Actives, Passives, and RFIDs 2007,		4
23	Experimental Analysis of the Water Absorption Effects on RF/mm-Wave Active/Passive Circuits Packaged in Multilayer Organic Substrates. <i>IEEE Transactions on Advanced Packaging</i> , 2007 , 30, 551-557		6
22	Design and Characterization of a \$W\$-Band Micromachined Cavity Filter Including a Novel Integrated Transition From CPW Feeding Lines. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2007 , 55, 2902-2910	4.1	17
21	Fully Integrated Passive Front-End Solutions for a V-band LTCC Wireless System. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2007 , 6, 285-288	3.8	49
20	A New High-Gain Microstrip Yagi Array Antenna With a High Front-to-Back (F/B) Ratio for WLAN and Millimeter-Wave Applications. <i>IEEE Transactions on Antennas and Propagation</i> , 2007 , 55, 298-304	4.9	86
19	RF MEMS Sequentially Reconfigurable Sierpinski Antenna on a Flexible Organic Substrate With Novel DC-Biasing Technique. <i>Journal of Microelectromechanical Systems</i> , 2007 , 16, 1185-1192	2.5	66
18	Design and Development of Advanced Cavity-Based Dual-Mode Filters Using Low-Temperature Co-Fired Ceramic Technology for \$V\$-Band Gigabit Wireless Systems. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2007 , 55, 1869-1879	4.1	29
17	Modified Wilkinson Power Dividers for Millimeter-Wave Integrated Circuits. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2007 , 55, 2439-2446	4.1	71
16	RFID Tag and RF Structures on a Paper Substrate Using Inkjet-Printing Technology. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2007 , 55, 2894-2901	4.1	436
15	Development of Multi-Broadband Planar Wire Antennas for Wireless Applications. <i>Wireless Personal Communications</i> , 2007 , 42, 1-11	1.9	2
14	Monolithic Low Cost Ka-Band Wilkinson Power Dividers on Flexible Organic Substrates 2007,		4
13	Design and integration of inkjet-printed paper-based UHF components for RFID and ubiquitous sensing applications 2007 ,		12
12	Antenna Advancement Techniques and Integration of RFID Electronics on Organic Substrates for UHF RFID Applications in Automotive Sensing and Vehicle Security. <i>Vehicular Technology Conference-Fall (VTC-FALL), Proceedings, IEEE</i> , 2007 ,		3
11	Compact Ultra Wideband (UWB) Elliptical Monopole with Potentially Reconfigurable Band Rejection Characteristic 2007 ,		9

10	Novel Manufacturing Processes for Ultra-Low-Cost Paper-Based RFID Tags with Enhanced "Wireless Intelligence" 2007 ,		9
9	Comparative Study of Feeding Techniques for Three-Dimensional Cavity Resonators at 60 GHz. <i>IEEE Transactions on Advanced Packaging</i> , 2007 , 30, 115-123		9
8	Integration of a 48 antenna array with a reconfigurable 2-bit phase shifter using RF MEMS switches on multilayer organic substrates 2007 ,		1
7	Bandwidth and gain improvement of a circularly polarized dual-rhombic loop antenna. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2006 , 5, 84-87	3.8	26
6	V-band Integrated Filter and Antenna for LTCC Front-End modules 2006,		7
5	Design and development of novel miniaturized UHF RFID tags on ultra-low-cost paper-based substrates 2006 ,		4
4	Design of experiments (DOE) technique for microwave/millimeter wave flip-chip optimization. <i>International Journal of Numerical Modelling: Electronic Networks, Devices and Fields</i> , 2003 , 16, 97-103	1	2
3	Finite Ground Coplanar Lines on CMOS Grade Silicon with a Thick Embedded Silicon Oxide Layer Using Micromachining Techniques 2003 ,		3
2	Measured Propagation Characteristics of Finite Ground Coplanar Waveguide on Silicon with a Thick Polyimide Interface Layer 2002 ,		5
1	A Perfectly Matched Layer Absorber Formulation for Haar Wavelet Based MRTD 1999 ,		2