Malcolm J Bennett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7408236/publications.pdf

Version: 2024-02-01

303 papers

38,157 citations

99 h-index 181 g-index

321 all docs 321 docs citations

321 times ranked

25144 citing authors

#	Article	IF	CITATIONS
1	Root angle in maize influences nitrogen capture and is regulated by calcineurin Bâ€like protein <scp>(CBL)</scp> â€interacting serine/threonineâ€protein kinase 15 (<scp><i>ZmClPK15</i></scp>). Plant, Cell and Environment, 2022, 45, 837-853.	2.8	46
2	Soil penetration by maize roots is negatively related to ethyleneâ€induced thickening. Plant, Cell and Environment, 2022, 45, 789-804.	2.8	23
3	The Virtual Root: Mathematical Modeling of Auxin Transport in the Arabidopsis Root Tip Using the Open-Source Software SimuPlant. Methods in Molecular Biology, 2022, 2395, 147-164.	0.4	1
4	Orchestration of ethylene and gibberellin signals determines primary root elongation in rice. Plant Cell, 2022, 34, 1273-1288.	3.1	25
5	Root phenotypes for the future. Plant, Cell and Environment, 2022, 45, 595-601.	2.8	16
6	Integrated root phenotypes for improved rice performance under low nitrogen availability. Plant, Cell and Environment, 2022, 45, 805-822.	2.8	23
7	Xâ€ray CT reveals 4D root system development and lateral root responses to nitrate in soil. The Plant Phenome Journal, 2022, 5, .	1.0	13
8	Systems approaches reveal that ABCB and PIN proteins mediate co-dependent auxin efflux. Plant Cell, 2022, 34, 2309-2327.	3.1	19
9	Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis. Journal of Experimental Botany, 2022, 73, 3569-3583.	2.4	18
10	Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat. Journal of Integrative Agriculture, 2022, 21, 917-932.	1.7	6
11	Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	34
12	Mapping sites of gibberellin biosynthesis in the Arabidopsis root tip. New Phytologist, 2021, 229, 1521-1534.	3.5	34
13	The interaction between wheat roots and soil pores in structured field soil. Journal of Experimental Botany, 2021, 72, 747-756.	2.4	46
14	A network of transcriptional repressors modulates auxin responses. Nature, 2021, 589, 116-119.	13.7	56
15	External Mechanical Cues Reveal a Katanin-Independent Mechanism behind Auxin-Mediated Tissue Bending in Plants. Developmental Cell, 2021, 56, 67-80.e3.	3.1	29
16	Uncovering How Auxin Optimizes Root Systems Architecture in Response to Environmental Stresses. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040014.	2.3	22
17	Addressing Research Bottlenecks to Crop Productivity. Trends in Plant Science, 2021, 26, 607-630.	4.3	76
18	OsJAZ11 regulates phosphate starvation responses in rice. Planta, 2021, 254, 8.	1.6	16

#	Article	IF	CITATIONS
19	AUXIN RESPONSE FACTORS 6 and 17 control the flag leaf angle in rice by regulating secondary cell wall biosynthesis of lamina joints. Plant Cell, 2021, 33, 3120-3133.	3.1	41
20	A Tale of Two Domains Pushing Lateral Roots. Trends in Plant Science, 2021, 26, 770-779.	4.3	5
21	Non-invasive hydrodynamic imaging in plant roots at cellular resolution. Nature Communications, 2021, 12, 4682.	5.8	19
22	Plant roots sense soil compaction through restricted ethylene diffusion. Science, 2021, 371, 276-280.	6.0	145
23	Oilseed Rape Cultivars Show Diversity of Root Morphologies with the Potential for Better Capture of Nitrogen. Nitrogen, 2021, 2, 491-505.	0.6	6
24	DWT1/DWL2 act together with OsPIP5K1 to regulate plant uniform growth in rice. New Phytologist, 2020, 225, 1234-1246.	3.5	16
25	Positioning the Root Elongation Zone Is Saltatory and Receives Input from the Shoot. IScience, 2020, 23, 101309.	1.9	4
26	CEP receptor signalling controls root system architecture in Arabidopsis and Medicago. New Phytologist, 2020, 226, 1809-1821.	3.5	35
27	A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nature Plants, 2020, 6, 1167-1178.	4.7	111
28	The CEP5 Peptide Promotes Abiotic Stress Tolerance, As Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis. Molecular and Cellular Proteomics, 2020, 19, 1248-1262.	2.5	35
29	Pitfalls in auxin pharmacology. New Phytologist, 2020, 227, 286-292.	3.5	7
30	Auxin-dependent control of a plasmodesmal regulator creates a negative feedback loop modulating lateral root emergence. Nature Communications, 2020, 11, 364.	5.8	41
31	Cell Death in Cells Overlying Lateral Root Primordia Facilitates Organ Growth in Arabidopsis. Current Biology, 2020, 30, 455-464.e7.	1.8	34
32	Early developmental plasticity of lateral roots in response to asymmetric water availability. Nature Plants, 2020, 6, 73-77.	4.7	23
33	Auxin fluxes through plasmodesmata modify root-tip auxin distribution. Development (Cambridge), 2020, 147, .	1.2	74
34	An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. Plant Journal, 2020, 103, 951-964.	2.8	151
35	Arabidopsis antibody resources for functional studies in plants. Scientific Reports, 2020, 10, 21945.	1.6	3
36	Genetic analysis of the Arabidopsis TIR1/AFB auxin receptors reveals both overlapping and specialized functions. ELife, 2020, 9, .	2.8	115

#	Article	IF	CITATIONS
37	Uncovering the hidden half of plants using new advances in root phenotyping. Current Opinion in Biotechnology, 2019, 55, 1-8.	3.3	248
38	A New Angle on How Roots Acclimate to Sporadic Rainfall. Cell, 2019, 178, 269-271.	13.5	7
39	Lateral Root Formation in Arabidopsis: A Well-Ordered LRexit. Trends in Plant Science, 2019, 24, 826-839.	4.3	109
40	PUCHI regulates very long chain fatty acid biosynthesis during lateral root and callus formation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14325-14330.	3.3	46
41	Emergent Protective Organogenesis in Date Palms: A Morpho-Devo-Dynamic Adaptive Strategy during Early Development. Plant Cell, 2019, 31, 1751-1766.	3.1	24
42	EXPANSIN A1-mediated radial swelling of pericycle cells positions anticlinal cell divisions during lateral root initiation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8597-8602.	3.3	71
43	Turning lateral roots into nodules. Science, 2019, 366, 953-954.	6.0	4
44	Anthropogenic environmental drivers of antimicrobial resistance in wildlife. Science of the Total Environment, 2019, 649, 12-20.	3.9	108
45	The Auxin-Regulated CrRLK1L Kinase ERULUS Controls Cell Wall Composition during Root Hair Tip Growth. Current Biology, 2018, 28, 722-732.e6.	1.8	113
46	AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. Nature Communications, 2018, 9, 1174.	5.8	160
47	A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nature Communications, 2018, 9, 1409.	5.8	146
48	Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nature Communications, 2018, 9, 1408.	5.8	110
49	Coordination of meristem and boundary functions by transcription factors in the SHOOT MERISTEMLESS regulatory network. Development (Cambridge), 2018, 145, .	1.2	41
50	Auxin molecular field maps define <scp>AUX</scp> 1 selectivity: many auxin herbicides are not substrates. New Phytologist, 2018, 217, 1625-1639.	3.5	24
51	Root Gravitropism: Quantification, Challenges, and Solutions. Methods in Molecular Biology, 2018, 1761, 103-112.	0.4	6
52	PYL8 mediates ABA perception in the root through non-cell-autonomous and ligand-stabilization–based mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11857-E11863.	3.3	46
53	Root branching toward water involves posttranslational modification of transcription factor ARF7. Science, 2018, 362, 1407-1410.	6.0	179
54	SUMO conjugation to the pattern recognition receptor FLS2 triggers intracellular signalling in plant innate immunity. Nature Communications, 2018, 9, 5185.	5.8	55

#	Article	IF	Citations
55	The Xerobranching Response Represses Lateral Root Formation When Roots Are Not in Contact with Water. Current Biology, 2018, 28, 3165-3173.e5.	1.8	94
56	Rice actin binding protein RMD controls crown root angle in response to external phosphate. Nature Communications, 2018, 9, 2346.	5 . 8	66
57	Plant Biology: Building Barriers… in Roots. Current Biology, 2017, 27, R172-R174.	1.8	8
58	Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4822-4827.	3.3	50
59	Root hydrotropism is controlled via a cortex-specific growth mechanism. Nature Plants, 2017, 3, 17057.	4.7	183
60	MtLAX2, a Functional Homologue of the Arabidopsis Auxin Influx Transporter AUX1, Is Required for Nodule Organogenesis. Plant Physiology, 2017, 174, 326-338.	2.3	56
61	Linear discriminant analysis reveals differences in root architecture in wheat seedlings related to nitrogen uptake efficiency. Journal of Experimental Botany, 2017, 68, 4969-4981.	2.4	26
62	Shaping 3D Root System Architecture. Current Biology, 2017, 27, R919-R930.	1.8	162
63	Ears, shoots and leaves. Nature Plants, 2017, 3, 686-687.	4.7	1
64	Plant Phenomics, From Sensors to Knowledge. Current Biology, 2017, 27, R770-R783.	1.8	416
65	Xâ€Ray Computed Tomography of Crop Plant Root Systems Grown in Soil. Current Protocols in Plant Biology, 2017, 2, 270-286.	2.8	28
66	Adding a Piece to the Leaf Epidermal Cell Shape Puzzle. Developmental Cell, 2017, 43, 255-256.	3.1	5
67	O <scp>pen</scp> S <scp>im</scp> R <scp>oot</scp> : widening the scope and application of root architectural models. New Phytologist, 2017, 215, 1274-1286.	3.5	158
68	Dynamic Regulation of Auxin Response during Rice Development Revealed by Newly Established Hormone Biosensor Markers. Frontiers in Plant Science, 2017, 8, 256.	1.7	41
69	A scanner-based rhizobox system enabling the quantification of root system development and response of <i>Brassica rapa</i> seedlings to external P availability. Plant Root, 2017, 11, 16-32.	0.3	7
70	Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots. Frontiers in Plant Science, 2016, 7, 829.	1.7	79
71	Visual tracking for the recovery of multiple interacting plant root systems from X-ray \$\$upmu \$\$ \hat{l} 4 CT images. Machine Vision and Applications, 2016, 27, 721-734.	1.7	17
72	Crosstalk between Gibberellin Signaling and Iron Uptake in Plants: An Achilles' Heel for Modern Cereal Varieties?. Developmental Cell, 2016, 37, 110-111.	3.1	6

#	Article	IF	CITATIONS
73	Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root. Development (Cambridge), 2016, 143, 3982-3993.	1.2	55
74	Dioxygenase-encoding <i>AtDAO1</i> gene controls IAA oxidation and homeostasis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11016-11021.	3.3	162
75	Quiescent center initiation in the <i>Arabidopsis</i> lateral root primordia is dependent on the <i>SCARECROW</i> transcription factor. Development (Cambridge), 2016, 143, 3363-71.	1.2	61
76	Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants. Journal of Integrative Plant Biology, 2016, 58, 230-241.	4.1	43
77	Lateral root emergence in <i>Arabidopsis</i> is dependent on transcription factor LBD29 regulating auxin influx carrier <i>LAX3</i> . Development (Cambridge), 2016, 143, 3340-9.	1.2	111
78	Hybrid vertex-midline modelling of elongated plant organs. Interface Focus, 2016, 6, 20160043.	1.5	16
79	RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development (Cambridge), 2016, 143, 3328-39.	1.2	152
80	â€~Disperse abroad in the land': the role of wildlife in the dissemination of antimicrobial resistance. Biology Letters, 2016, 12, 20160137.	1.0	156
81	One Gene, Many Proteins: Mapping Cell-Specific Alternative Splicing in Plants. Developmental Cell, 2016, 39, 383-385.	3.1	18
82	Dynamic regulation of auxin oxidase and conjugating enzymes $\langle i \rangle$ AtDAO1 $\langle i \rangle$ and $\langle i \rangle$ GH3 $\langle i \rangle$ modulates auxin homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11022-11027.	3.3	119
83	Effects of rooting media on root growth and morphology of Brassica rapa seedlings. South African Journal of Plant and Soil, 2016, 33, 219-227.	0.4	4
84	Tonoplast Aquaporins Facilitate Lateral Root Emergence. Plant Physiology, 2016, 170, 1640-1654.	2.3	53
85	The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots. Journal of Experimental Botany, 2016, 67, 3629-3643.	2.4	204
86	Hydrotropism: Analysis of the Root Response to a Moisture Gradient. Methods in Molecular Biology, 2016, 1398, 3-9.	0.4	20
87	GH3-Mediated Auxin Conjugation Can Result in Either Transient or Oscillatory Transcriptional Auxin Responses. Bulletin of Mathematical Biology, 2016, 78, 210-234.	0.9	11
88	Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor. Journal of Cell Science, 2016, 129, e1.2-e1.2.	1.2	1
89	Auxin influx importers modulate serration along the leaf margin. Plant Journal, 2015, 83, 705-718.	2.8	48
90	Extracting multiple interacting root systems using Xâ€ray microcomputed tomography. Plant Journal, 2015, 84, 1034-1043.	2.8	40

#	Article	IF	Citations
91	Achieving more crop per drop. Nature Plants, 2015, 1, 15118.	4.7	29
92	Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone. Frontiers in Cell and Developmental Biology, 2015, 3, 10.	1.8	30
93	Inference of the Arabidopsis Lateral Root Gene Regulatory Network Suggests a Bifurcation Mechanism That Defines Primordia Flanking and Central Zones. Plant Cell, 2015, 27, 1368-1388.	3.1	105
94	On the evaluation of methods for the recovery of plant root systems from X-ray computed tomography images. Functional Plant Biology, 2015, 42, 460.	1.1	21
95	New insights into root gravitropic signalling. Journal of Experimental Botany, 2015, 66, 2155-2165.	2.4	141
96	Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development (Cambridge), 2015, 142, 702-11.	1.2	92
97	A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants. Nature Communications, 2015, 6, 6043.	5.8	130
98	The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana. Nature Communications, 2015, 6, 7641.	5.8	119
99	Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling. Journal of Experimental Botany, 2015, 66, 2305-2314.	2.4	60
100	Auxin Influx Carriers Control Vascular Patterning and Xylem Differentiation in Arabidopsis thaliana. PLoS Genetics, 2015, 11, e1005183.	1.5	70
101	Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat. Journal of Experimental Botany, 2015, 66, 2283-2292.	2.4	196
102	Seeing the wood and the trees. Nature, 2015, 517, 558-559.	13.7	5
103	Modelling of Arabidopsis LAX3 expression suggests auxin homeostasis. Journal of Theoretical Biology, 2015, 366, 57-70.	0.8	12
104	Visual Object Tracking for the Extraction of Multiple Interacting Plant Root Systems. Lecture Notes in Computer Science, 2015, , 89-104.	1.0	2
105	Genome Wide Binding Site Analysis Reveals Transcriptional Coactivation of Cytokinin-Responsive Genes by DELLA Proteins. PLoS Genetics, 2015, 11, e1005337.	1.5	99
106	Imaging and Quantitative Methods for Studying Cytoskeletal Rearrangements During Root Development and Gravitropism. Methods in Molecular Biology, 2015, 1309, 81-89.	0.4	1
107	Plant roots use a patterning mechanism to position lateral root branches toward available water. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9319-9324.	3.3	317
108	Systems Analysis of Auxin Transport in the <i>Arabidopsis</i> Root Apex Â. Plant Cell, 2014, 26, 862-875.	3.1	190

#	Article	IF	Citations
109	Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in <i>Arabidopsis</i> roots. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 857-862.	3.3	98
110	Comparison of SNP-Based Detection Assays for Food Analysis: Coffee Authentication. Journal of AOAC INTERNATIONAL, 2014, 97, 1114-1120.	0.7	9
111	The roots of future rice harvests. Rice, 2014, 7, 29.	1.7	57
112	Mechanical modelling quantifies the functional importance of outer tissue layers during root elongation and bending. New Phytologist, 2014, 202, 1212-1222.	3.5	53
113	<i>At</i> <scp>MYB</scp> 93 is a novel negative regulator of lateral root development in Arabidopsis. New Phytologist, 2014, 203, 1194-1207.	3.5	79
114	The ASH1-RELATED3 SET-Domain Protein Controls Cell Division Competence of the Meristem and the Quiescent Center of the Arabidopsis Primary Root Â. Plant Physiology, 2014, 166, 632-643.	2.3	35
115	Small Ubiquitin-like Modifier Protein SUMO Enables Plants to Control Growth Independently of the Phytohormone Gibberellin. Developmental Cell, 2014, 28, 102-110.	3.1	139
116	Modelling hormonal response and development. Trends in Plant Science, 2014, 19, 311-319.	4.3	100
117	Feline Poxvirus Infections. , 2014, , 252-256.		1
118	A scanner system for high-resolution quantification of variation in root growth dynamics of Brassica rapa genotypes. Journal of Experimental Botany, 2014, 65, 2039-2048.	2.4	96
119	A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development. Nature Cell Biology, 2014, 16, 66-76.	4.6	245
120	Rice actin-binding protein RMD is a key link in the auxin–actin regulatory loop that controls cell growth. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10377-10382.	3.3	95
121	Systems biology approaches to understand the role of auxin in root growth and development. Physiologia Plantarum, 2014, 151, 73-82.	2.6	15
122	Branching Out in Roots: Uncovering Form, Function, and Regulation. Plant Physiology, 2014, 166, 538-550.	2.3	231
123	Hormone Crosstalk: Directing the Flow. Current Biology, 2014, 24, R366-R368.	1.8	7
124	Interview with Malcolm J. Bennett. Trends in Plant Science, 2014, 19, 273-274.	4.3	2
125	Time-Profiling Fluorescent Reporters in the Arabidopsis Root. Methods in Molecular Biology, 2014, 1056, 11-17.	0.4	7
126	Auxin transport: Providing plants with a new sense of direction. Biochemist, 2014, 36, 12-15.	0.2	6

#	Article	IF	Citations
127	Quantifying the effect of soil moisture content on segmenting root system architecture in X-ray computed tomography images. Plant and Soil, 2013, 370, 35-45.	1.8	49
128	Post-embryonic root organogenesis in cereals: branching out from model plants. Trends in Plant Science, 2013, 18, 459-467.	4.3	142
129	SnapShot: Root Development. Cell, 2013, 155, 1190-1190.e1.	13.5	4
130	Cytokinin Induces Cell Division in the Quiescent Center of the Arabidopsis Root Apical Meristem. Current Biology, 2013, 23, 1979-1989.	1.8	151
131	Inference of the Genetic Network Regulating Lateral Root Initiation in Arabidopsis thaliana. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013, 10, 50-60.	1.9	6
132	The role of auxin and cytokinin signalling in specifying the root architecture of Arabidopsis thaliana. Journal of Theoretical Biology, 2013, 317, 71-86.	0.8	49
133	Biosensors for phytohormone quantification: challenges, solutions, and opportunities. Trends in Plant Science, 2013, 18, 244-249.	4.3	33
134	Endodermal ABA Signaling Promotes Lateral Root Quiescence during Salt Stress in <i>Arabidopsis</i> Seedlings Â. Plant Cell, 2013, 25, 324-341.	3.1	367
135	MicroFilament Analyzer, an image analysis tool for quantifying fibrillar orientation, reveals changes in microtubule organization during gravitropism. Plant Journal, 2013, 74, 1045-1058.	2.8	30
136	Lateral root development in Arabidopsis: fifty shades of auxin. Trends in Plant Science, 2013, 18, 450-458.	4.3	536
137	Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5235-5240.	3.3	213
138	RootNav: Navigating Images of Complex Root Architectures Â. Plant Physiology, 2013, 162, 1802-1814.	2.3	218
139	Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5229-5234.	3.3	233
140	Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. Molecular Systems Biology, 2013, 9, 699.	3.2	104
141	Root Systems Biology: Integrative Modeling across Scales, from Gene Regulatory Networks to the Rhizosphere. Plant Physiology, 2013, 163, 1487-1503.	2.3	34
142	Mapping the site of action of the Green Revolution hormone gibberellin. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4443-4444.	3.3	10
143	PYRABACTIN RESISTANCE1-LIKE8 Plays an Important Role for the Regulation of Abscisic Acid Signaling in Root Â. Plant Physiology, 2013, 161, 931-941.	2.3	244
144	Exploring the Diversity of Arcobacter butzleri from Cattle in the UK Using MLST and Whole Genome Sequencing. PLoS ONE, 2013, 8, e55240.	1.1	43

#	Article	IF	CITATIONS
145	Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography. PLoS ONE, 2013, 8, e67250.	1.1	70
146	In Silico Plant Biology Comes of Age. Plant Cell, 2012, 24, 3857-3858.	3.1	5
147	Recovering the dynamics of root growth and development using novel image acquisition and analysis methods. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1517-1524.	1.8	41
148	Analyzing Lateral Root Development: How to Move Forward. Plant Cell, 2012, 24, 15-20.	3.1	125
149	Analysis of Risk Factors Associated with Antibiotic-Resistant <i>Escherichia coli</i> Resistance, 2012, 18, 161-168.	0.9	13
150	Growth-induced hormone dilution can explain the dynamics of plant root cell elongation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7577-7582.	3.3	95
151	Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4668-4673.	3.3	304
152	<i>AUX/LAX</i> Genes Encode a Family of Auxin Influx Transporters That Perform Distinct Functions during <i>Arabidopsis</i> Development. Plant Cell, 2012, 24, 2874-2885.	3.1	373
153	RooTrak: Automated Recovery of Three-Dimensional Plant Root Architecture in Soil from X-Ray Microcomputed Tomography Images Using Visual Tracking Â. Plant Physiology, 2012, 158, 561-569.	2.3	215
154	Auxin reflux between the endodermis and pericycle promotes lateral root initiation. EMBO Journal, 2012, 32, 149-158.	3.5	148
155	CellSeT: Novel Software to Extract and Analyze Structured Networks of Plant Cells from Confocal Images. Plant Cell, 2012, 24, 1353-1361.	3.1	88
156	Ecology of zoonoses: natural and unnatural histories. Lancet, The, 2012, 380, 1936-1945.	6.3	590
157	Multiscale Systems Analysis of Root Growth and Development: Modeling Beyond the Network and Cellular Scales. Plant Cell, 2012, 24, 3892-3906.	3.1	64
158	Mathematical modeling elucidates the role of transcriptional feedback in gibberellin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7571-7576.	3.3	119
159	Hormonal regulation of root growth: integrating local activities into global behaviour. Trends in Plant Science, 2012, 17, 326-331.	4.3	97
160	Auxin regulates aquaporin function to facilitate lateral root emergence. Nature Cell Biology, 2012, 14, 991-998.	4.6	323
161	A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature, 2012, 482, 103-106.	13.7	664
162	Developing X-ray Computed Tomography to non-invasively image 3-D root systems architecture in soil. Plant and Soil, 2012, 352, 1-22.	1.8	347

#	Article	IF	CITATIONS
163	The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Molecular Systems Biology, 2011, 7, 508.	3.2	520
164	Plant systems biology: network matters. Plant, Cell and Environment, 2011, 34, 535-553.	2.8	70
165	Root Development: Cytokinin Transport Matters, Too!. Current Biology, 2011, 21, R423-R425.	1.8	9
166	Evidence of Spread of the Emerging Infectious Disease, Finch Trichomonosis, by Migrating birds. EcoHealth, 2011, 8, 143-153.	0.9	52
167	The influence of cytokinin–auxin cross-regulation on cell-fate determination in Arabidopsis thaliana root development. Journal of Theoretical Biology, 2011, 283, 152-167.	0.8	40
168	SHORT-ROOT Regulates Primary, Lateral, and Adventitious Root Development in Arabidopsis Â. Plant Physiology, 2011, 155, 384-398.	2.3	163
169	Brassinosteroid perception in the epidermis controls root meristem size. Development (Cambridge), 2011, 138, 839-848.	1.2	302
170	The Novel Cyst Nematode Effector Protein 19C07 Interacts with the Arabidopsis Auxin Influx Transporter LAX3 to Control Feeding Site Development Â. Plant Physiology, 2011, 155, 866-880.	2.3	141
171	Unraveling the Evolution of Auxin Signaling Â. Plant Physiology, 2011, 155, 209-221.	2.3	140
172	Conserved <i>Arabidopsis</i> ECHIDNA protein mediates <i>trans</i> –Golgi-network trafficking and cell elongation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8048-8053.	3.3	130
173	Folate Polyglutamylation is Required for Rice Seed Development. Rice, 2010, 3, 181-193.	1.7	9
174	Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study. BMC Systems Biology, 2010, 4, 34.	3.0	35
175	Plant Development: Size Matters, andÂlt's All Down to Hormones. Current Biology, 2010, 20, R511-R513.	1.8	31
176	A Novel Aux/IAA28 Signaling Cascade Activates GATA23-Dependent Specification of Lateral Root Founder Cell Identity. Current Biology, 2010, 20, 1697-1706.	1.8	431
177	Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England. Annals of Clinical Microbiology and Antimicrobials, 2010, 9, 12.	1.7	77
178	Getting to the root of plant biology: impact of the Arabidopsis genome sequence on root research. Plant Journal, 2010, 61, 992-1000.	2.8	67
179	Functional analysis of folate polyglutamylation and its essential role in plant metabolism and development. Plant Journal, 2010, 64, 267-279.	2.8	67
180	A central role for gamma-glutamyl hydrolases in plant folate homeostasis. Plant Journal, 2010, 64, 256-266.	2.8	48

#	Article	IF	CITATIONS
181	The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana. Annals of Botany, 2010, 105, 277-289.	1.4	93
182	SHORT-ROOT and SCARECROW Regulate Leaf Growth in Arabidopsis by Stimulating S-Phase Progression of the Cell Cycle. Plant Physiology, 2010, 154, 1183-1195.	2.3	98
183	Auxin Carriers Localization Drives Auxin Accumulation in Plant Cells Infected by <i>Frankia</i> in <i>Casuarina glauca</i> Actinorhizal Nodules. Plant Physiology, 2010, 154, 1372-1380.	2.3	75
184	The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in <i>Arabidopsis thaliana</i> seedlings. Development (Cambridge), 2010, 137, 597-606.	1.2	226
185	Bimodular auxin response controls organogenesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2705-2710.	3. 3	271
186	Feeling UPBEAT about Growth: Linking ROS Gradients and Cell Proliferation. Developmental Cell, 2010, 19, 644-646.	3.1	23
187	Shootward and rootward: peak terminology for plant polarity. Trends in Plant Science, 2010, 15, 593-594.	4.3	39
188	Characterization of a novel wood mouse virus related to murid herpesvirus 4. Journal of General Virology, 2010, 91, 867-879.	1.3	29
189	Divergent Evolution of Duplicate Genes Leads to Genetic Incompatibilities Within <i>A. thaliana</i> Science, 2009, 323, 623-626.	6.0	264
190	Lateral root emergence: a difficult birth. Journal of Experimental Botany, 2009, 60, 3637-3643.	2.4	167
191	MODULAR ASSEMBLY OF CELL SYSTEMS BIOLOGY MODELS USING (font) P Journal of Foundations of Computer Science, 2009, 20, 427-442.	0.8	41
192	Genetically Diverse Coronaviruses in Wild Bird Populations of Northern England. Emerging Infectious Diseases, 2009, 15, 1091-1094.	2.0	65
193	Gibberellin Signaling in the Endodermis Controls Arabidopsis Root Meristem Size. Current Biology, 2009, 19, 1194-1199.	1.8	360
194	Auxin transport through non-hair cells sustains root-hair development. Nature Cell Biology, 2009, 11, 78-84.	4.6	212
195	High-Throughput Quantification of Root Growth Using a Novel Image-Analysis Tool Â. Plant Physiology, 2009, 150, 1784-1795.	2.3	190
196	Arabidopsis lateral root development: an emerging story. Trends in Plant Science, 2009, 14, 399-408.	4.3	681
197	The vicious circle and infection intensity: The case of Trypanosoma microti in field vole populations. Epidemics, 2009, 1, 162-167.	1.5	15
198	Complex regulation of the TIR1/AFB family of auxin receptors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22540-22545.	3.3	403

#	Article	IF	Citations
199	Molecular Epidemiology and Characterization of <i>Campylobacter</i> spp. Isolated from Wild Bird Populations in Northern England. Applied and Environmental Microbiology, 2009, 75, 3007-3015.	1.4	53
200	Azurocytes in Wild Field Voles: Factors Associated with Their Occurrence. EcoHealth, 2008, 5, 317-327.	0.9	3
201	Characterisation of Salmonella enterica serotype Typhimurium isolates from wild birds in northern England from 2005 – 2006. BMC Veterinary Research, 2008, 4, 4.	0.7	83
202	Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endodermis. Nature Cell Biology, 2008, 10, 625-628.	4.6	273
203	The auxin influx carrier LAX3 promotes lateral root emergence. Nature Cell Biology, 2008, 10, 946-954.	4.6	715
204	Colocalization of fluorescent markers in confocal microscope images of plant cells. Nature Protocols, 2008, 3, 619-628.	5.5	333
205	The flowering of systems approaches in plant and crop biology. New Phytologist, 2008, 179, 567-568.	3.5	7
206	Cowpox virus infection in natural field vole <i>Microtus agrestis</i> populations: significant negative impacts on survival. Journal of Animal Ecology, 2008, 77, 110-119.	1.3	63
207	The dynamics of health in wild field vole populations: a haematological perspective. Journal of Animal Ecology, 2008, 77, 984-997.	1.3	83
208	Poor condition and infection: a vicious circle in natural populations. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1753-1759.	1.2	120
209	Folate biofortification in food plants. Trends in Plant Science, 2008, 13, 28-35.	4.3	112
210	Evaluation of DNA extraction methods from green and roasted coffee beans. Food Control, 2008, 19, 257-262.	2.8	14
211	Toward the Authentication of Wines of Nemea Denomination of Origin through Cleaved Amplified Polymorphic Sequence (CAPS)-Based Assay. Journal of Agricultural and Food Chemistry, 2008, 56, 7667-7671.	2.4	16
212	Parasite interactions in natural populations: insights from longitudinal data. Parasitology, 2008, 135, 767-781.	0.7	104
213	Host Range and Genetic Diversity of Arenaviruses in Rodents, United Kingdom. Emerging Infectious Diseases, 2008, 14, 1455-1458.	2.0	23
214	The Binding of Auxin to the Arabidopsis Auxin Influx Transporter AUX1. Plant Physiology, 2008, 148, 529-535.	2.3	56
215	Cytokinins Act Directly on Lateral Root Founder Cells to Inhibit Root Initiation. Plant Cell, 2008, 19, 3889-3900.	3.1	498
216	Auxin influx carriers stabilize phyllotactic patterning. Genes and Development, 2008, 22, 810-823.	2.7	248

#	Article	IF	CITATIONS
217	Composition and Function of Haemolymphatic Tissues in the European Common Shrew. PLoS ONE, 2008, 3, e3413.	1.1	4
218	Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development (Cambridge), 2007, 134, 681-690.	1.2	540
219	THE DYNAMICS OF MURID GAMMAHERPESVIRUS 4 WITHIN WILD, SYMPATRIC POPULATIONS OF BANK VOLES AND WOOD MICE. Journal of Wildlife Diseases, 2007, 43, 32-39.	0.3	20
220	Auxin Influx Activity Is Associated with Frankia Infection during Actinorhizal Nodule Formation in Casuarina glauca Â. Plant Physiology, 2007, 144, 1852-1862.	2.3	84
221	Identification of Novel Rodent Herpesviruses, Including the First Gammaherpesvirus of Mus musculus. Journal of Virology, 2007, 81, 8091-8100.	1.5	89
222	Ethylene Upregulates Auxin Biosynthesis in <i>Arabidopsis</i> Seedlings to Enhance Inhibition of Root Cell Elongation. Plant Cell, 2007, 19, 2186-2196.	3.1	536
223	New insight into the biochemical mechanisms regulating auxin transport in plants. Biochemical Journal, 2007, 401, 613-622.	1.7	79
224	ECOLOGICAL DIFFERENCES AND COEXISTENCE IN A GUILD OF MICROPARASITES:BARTONELLAIN WILD RODENTS. Ecology, 2007, 88, 1841-1849.	1.5	42
225	Epithiospecifier Protein from Broccoli (Brassica oleraceaL. ssp.italica) Inhibits Formation of the Anticancer Agent Sulforaphane. Journal of Agricultural and Food Chemistry, 2006, 54, 2069-2076.	2.4	201
226	Subcellular Trafficking of the Arabidopsis Auxin Influx Carrier AUX1 Uses a Novel Pathway Distinct from PIN1. Plant Cell, 2006, 18, 3171-3181.	3.1	239
227	Authentication of Coffee by Means of PCR-RFLP Analysis and Lab-on-a-Chip Capillary Electrophoresis. Journal of Agricultural and Food Chemistry, 2006, 54, 7466-7470.	2.4	72
228	AXR4 Is Required for Localization of the Auxin Influx Facilitator AUX1. Science, 2006, 312, 1218-1220.	6.0	165
229	Apical–basal polarity: why plant cells don't standon their heads. Trends in Plant Science, 2006, 11, 12-14.	4.3	37
230	Auxin transport: a field in flux. Trends in Plant Science, 2006, 11, 382-386.	4.3	211
231	Epizootiologic Parameters for Plague in Kazakhstan. Emerging Infectious Diseases, 2006, 12, 268-273.	2.0	31
232	Genomic-assisted identification of genes involved in secondary growth in Arabidopsis utilising transcript profiling of poplar wood-forming tissues. Physiologia Plantarum, 2006, 129, 415-428.	2.6	22
233	TheArabidopsis thaliana/Myzus persicaemodel system demonstrates that a single gene can influence the interaction between a plant and a sap-feeding insect. Molecular Ecology, 2006, 15, 4203-4213.	2.0	38
234	Cowpox virus infection in natural field vole Microtus agrestis populations: delayed density dependence and individual risk. Journal of Animal Ecology, 2006, 75, 1416-1425.	1.3	45

#	Article	IF	Citations
235	Inference of cowpox virus transmission rates between wild rodent host classes using space–time interaction. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 775-782.	1.2	14
236	Heterogeneous distributions of Escherichia coli O157 within naturally infected bovine faecal pats. FEMS Microbiology Letters, 2005, 244, 291-296.	0.7	18
237	Integrative biology: dissecting cross-talk between plant signalling pathways. Physiologia Plantarum, 2005, 123, 109-109.	2.6	8
238	Space-time clustering of cowpox virus infection in wild rodent populations. Journal of Animal Ecology, 2005, 74, 647-655.	1.3	11
239	Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nature Cell Biology, 2005, 7, 1057-1065.	4.6	514
240	Infection with cowpox virus decreases female maturation rates in wild populations of woodland rodents. Oikos, 2005, 109, 317-322.	1.2	58
241	Comprehensive metabolic profiling of mono- and polyglutamated folates and their precursors in plant and animal tissue using liquid chromatography/negative ion electrospray ionisation tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2005, 19, 2390-2398.	0.7	65
242	Garden bird health. Veterinary Record, 2005, 156, 656-656.	0.2	6
243	Flea-borne <i>Bartonella grahamii</i> and <i>Bartonella taylorii</i> in Bank Voles. Emerging Infectious Diseases, 2004, 10, 684-687.	2.0	124
244	Disease dynamics in cyclic populations of field voles (Microtus agrestis): cowpox virus and vole tuberculosis (Mycobacterium microti). Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 859-867.	1.2	62
245	Structure-Function Analysis of the Presumptive Arabidopsis Auxin Permease AUX1[W]. Plant Cell, 2004, 16, 3069-3083.	3.1	308
246	Intermittent and persistent shedding of Escherichia coli O157 in cohorts of naturally infected calves. Journal of Applied Microbiology, 2004, 97, 1045-1053.	1.4	89
247	Natural genetic variation in caesium (Cs) accumulation by Arabidopsis thaliana. New Phytologist, 2004, 162, 535-548.	3.5	64
248	Rodents, cowpox virus and islands: densities, numbers and thresholds. Journal of Animal Ecology, 2003, 72, 343-355.	1.3	42
249	Regulation of phyllotaxis by polar auxin transport. Nature, 2003, 426, 255-260.	13.7	1,361
250	The case for morphogens in plants. Nature Cell Biology, 2003, 5, 939-943.	4.6	128
251	Dissecting Arabidopsis lateral root development. Trends in Plant Science, 2003, 8, 165-171.	4.3	618
252	Auxin Transport. Developmental Cell, 2003, 5, 824-826.	3.1	98

#	Article	IF	CITATIONS
253	Changes in Gene Expression in Arabidopsis Shoots during Phosphate Starvation and the Potential for Developing Smart Plants. Plant Physiology, 2003, 132, 578-596.	2.3	393
254	The wood mouse is a natural host for Murid herpesvirus 4. Journal of General Virology, 2003, 84, 111-113.	1.3	73
255	Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10096-10101.	3.3	225
256	Seasonal Dynamics of <i>Anaplasma phagocytophila </i> in a Rodent-Tick (<i>lxodes) Tj ETQq0 0 0 rgBT /Ov</i>	verlock 10 2.0	Tf 50 622 Td
257	AUX1 Promotes Lateral Root Formation by Facilitating Indole-3-Acetic Acid Distribution between Sink and Source Tissues in the Arabidopsis Seedling. Plant Cell, 2002, 14, 589-597.	3.1	473
258	A clarification of transmission terms in host-microparasite models: numbers, densities and areas. Epidemiology and Infection, 2002, 129, 147-153.	1.0	388
259	Mycobacterium microti Infection (Vole Tuberculosis) in Wild Rodent Populations. Journal of Clinical Microbiology, 2002, 40, 3281-3285.	1.8	83
260	Auxin cross-talk: integration of signalling pathways to control plant development., 2002, 49, 411-426.		125
261	Excretion of Vancomycin-Resistant Enterococci by Wild Mammals. Emerging Infectious Diseases, 2002, 8, 636-638.	2.0	52
262	Cell Polarity Signaling in Arabidopsis Involves a BFA-Sensitive Auxin Influx Pathway. Current Biology, 2002, 12, 329-334.	1.8	131
263	The effects of cowpox virus on survival in natural rodent populations: increases and decreases. Journal of Animal Ecology, 2002, 71, 558-568.	1.3	74
264	Shoot-derived auxin is essential for early lateral root emergence in Arabidopsisseed lings. Plant Journal, 2002, 29, 325-332.	2.8	463
265	Auxin cross-talk: integration of signalling pathways to control plant development. Plant Molecular Biology, 2002, 49, 409-424.	2.0	170
266	Finding Your Knockout: Reverse Genetics Techniques for Plants. Molecular Biotechnology, 2002, 20, 209-222.	1.3	4
267	Expression Studies on AUX1-like Genes in Medicago truncatula Suggest That Auxin Is Required at Two Steps in Early Nodule Development. Molecular Plant-Microbe Interactions, 2001, 14, 267-277.	1.4	140
268	Quick on the Uptake: Characterization of a Family of Plant Auxin Influx Carriers. Journal of Plant Growth Regulation, 2001, 20, 217-225.	2.8	101
269	Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant Journal, 2001, 25, 399-406.	2.8	163
270	Auxin Transport Promotes Arabidopsis Lateral Root Initiation. Plant Cell, 2001, 13, 843-852.	3.1	930

#	Article	IF	CITATIONS
271	Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes and Development, 2001, 15, 2648-2653.	2.7	571
272	Mutational Studies Of Root Architecture In Arabidopsis thaliana. Developments in Plant Genetics and Breeding, 2000, , 149-156.	0.6	0
273	The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14819-14824.	3.3	284
274	Moving on up: auxin-induced K+ channel expression regulates gravitropism. Trends in Plant Science, 2000, 5, 85-86.	4.3	9
275	Antibiotic resistance found in wild rodents. Nature, 1999, 401, 233-234.	13.7	207
276	Nucleotide sequence of UK and Australian isolates of feline calicivirus (FCV) and phylogenetic analysis of FCVs. Veterinary Microbiology, 1999, 67, 175-193.	0.8	63
277	AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO Journal, 1999, 18, 2066-2073.	3.5	541
278	Cowpox: reservoir hosts and geographic range. Epidemiology and Infection, 1999, 122, 455-460.	1.0	203
279	The Arabidopsis AUX1 gene: a model system to study mRNA processing in plants. , 1998, 36, 463-471.		35
280	AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO Journal, 1998, 17, 6903-6911.	3.5	840
281	Cell marking inArabidopsis thaliana andits application to patch-clamp studies. Plant Journal, 1998, 15, 843-851.	2.8	40
		2.0	
282	GranulocyticEhrlichiainfection in Ixodid ticks and mammals in woodlands and uplands of the U.K Medical and Veterinary Entomology, 1998, 12, 423-429.	0.7	125
282	GranulocyticEhrlichiainfection in Ixodid ticks and mammals in woodlands and uplands of the U.K Medical and Veterinary Entomology, 1998, 12, 423-429. Going the distance with auxin: unravelling the molecular basis of auxin transport. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 1511-1515.		125 62
	Medical and Veterinary Entomology, 1998, 12, 423-429. Going the distance with auxin: unravelling the molecular basis of auxin transport. Philosophical	0.7	
283	Medical and Veterinary Entomology, 1998, 12, 423-429. Going the distance with auxin: unravelling the molecular basis of auxin transport. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 1511-1515. SEROSURVEY FOR ORTHOPOXVIRUSES IN RODENTS AND SHREWS FROM NORWAY. Journal of Wildlife	0.7	62
283	Medical and Veterinary Entomology, 1998, 12, 423-429. Going the distance with auxin: unravelling the molecular basis of auxin transport. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 1511-1515. SEROSURVEY FOR ORTHOPOXVIRUSES IN RODENTS AND SHREWS FROM NORWAY. Journal of Wildlife Diseases, 1998, 34, 240-250. The effect of cowpox virus infection on fecundity in bank voles and wood mice. Proceedings of the	0.7 1.8 0.3	62 46
283 284 285	Medical and Veterinary Entomology, 1998, 12, 423-429. Going the distance with auxin: unravelling the molecular basis of auxin transport. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 1511-1515. SEROSURVEY FOR ORTHOPOXVIRUSES IN RODENTS AND SHREWS FROM NORWAY. Journal of Wildlife Diseases, 1998, 34, 240-250. The effect of cowpox virus infection on fecundity in bank voles and wood mice. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1457-1461. Virus zoonoses â€" A long-term overview. Comparative Immunology, Microbiology and Infectious	0.7 1.8 0.3	62 46 79

#	Article	IF	CITATIONS
289	Serological evidence for the reservoir hosts of cowpox virus in British wildlife. Epidemiology and Infection, 1995, 115, 185-191.	1.0	117
290	Human cowpox 1969–93: a review based on 54 cases. British Journal of Dermatology, 1994, 131, 598-607.	1.4	226
291	Selective cleavage of closely-related mRNAs by synthetic ribozymes. Nucleic Acids Research, 1992, 20, 831-837.	6.5	26
292	Nitrogen assimilation in the legume root nodule: current status of the molecular biology of the plant enzymes. Canadian Journal of Microbiology, 1992, 38, 461-466.	0.8	26
293	Effect of primary-stage feline immunodeficiency virus infection on subsequent feline calicivirus vaccination and challenge in cats. Aids, 1991, 5, 747-750.	1.0	44
294	Latency and reactivation of infectious laryngotracheitis vaccine virus. Archives of Virology, 1991, 121, 213-218.	0.9	95
295	Expression of three plant glutamine synthetase cDNA in Escherichia coli. Formation of catalytically active isoenzymes, and complementation of a glnA mutant. FEBS Journal, 1990, 193, 319-324.	0.2	23
296	Expression of glutamine synthetase genes in roots and nodules of Phaseolus vulgaris following changes in the ammonium supply and infection with various Rhizobium mutants. Plant Molecular Biology, 1990, 14, 549-560.	2.0	47
297	Effect of the Nitrogen Supply on the Activities of Isoenzymes of NADH-dependent Glutamate Synthase and Glutamine Synthetase in Root Nodules ofPhaseolus vulgarisL Journal of Experimental Botany, 1990, 41, 1215-1221.	2.4	10
298	Regulation of expression of the GLN-Ï,, gene of Phaseolus vulgaris L., 1990,, 713-714.		0
299	Glutamine synthetase isoenzymes of Phaseolus vulgaris L.: subunit composition in developing root nodules and plumules. Planta, 1989, 179, 433-440.	1.6	57
300	cDNA sequence and differential expression of the gene encoding the glutamine synthetase? polypeptide ofPhaseolus vulgaris L Plant Molecular Biology, 1989, 12, 553-565.	2.0	79
301	The Molecular Biology and Biochemistry of Plant Glutamine Synthetase from Root Nodules of Phaseolus vulgaris L. and other Legumes. Journal of Plant Physiology, 1988, 132, 387-393.	1.6	58
302	Root Gravitropism. , 0, , 157-174.		3
303	The Xerobranching Response Represses Lateral Root Formation When Roots Are Not in Contact With Water. SSRN Electronic Journal, 0, , .	0.4	1