
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7408133/publications.pdf Version: 2024-02-01

DETED D SUM

#	Article	IF	CITATIONS
1	Crystal structure of an NK cell immunoglobulin-like receptor in complex with its class I MHC ligand. Nature, 2000, 405, 537-543.	27.8	386
2	Recognition of peptide–MHC class I complexes by activating killer immunoglobulin-like receptors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13224-13229.	7.1	358
3	The Structure of a Human Type III FcÎ ³ Receptor in Complex with Fc. Journal of Biological Chemistry, 2001, 276, 16469-16477.	3.4	325
4	Structural recognition and functional activation of Fcl ³ R by innate pentraxins. Nature, 2008, 456, 989-992.	27.8	272
5	Natural killer cell-produced IFN-Î ³ and TNF-α induce target cell cytolysis through up-regulation of ICAM-1. Journal of Leukocyte Biology, 2011, 91, 299-309.	3.3	211
6	T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences. ELife, 2017, 6, .	6.0	175
7	A structural perspective on MHC class I recognition by killer cell immunoglobulin-like receptors. Molecular Immunology, 2002, 38, 1007-1021.	2.2	162
8	Conformational Plasticity Revealed by the Cocrystal Structure of NKG2D and Its Class I MHC-like Ligand ULBP3. Immunity, 2001, 15, 1039-1049.	14.3	139
9	Ternary Complex of Transforming Growth Factor-β1 Reveals Isoform-specific Ligand Recognition and Receptor Recruitment in the Superfamily. Journal of Biological Chemistry, 2010, 285, 14806-14814.	3.4	135
10	Structure of CD94 Reveals a Novel C-Type Lectin Fold. Immunity, 1999, 10, 75-82.	14.3	129
11	Recognition of immunoglobulins by FcÎ ³ receptors. Molecular Immunology, 2002, 38, 1073-1083.	2.2	128
12	Recognition of IgG by Fcl ³ Receptor. Journal of Biological Chemistry, 2001, 276, 16478-16483.	3.4	124
13	Glycosylation, Hypogammaglobulinemia, and Resistance to Viral Infections. New England Journal of Medicine, 2014, 370, 1615-1625.	27.0	117
14	Structure of Fcl ³ RI in complex with Fc reveals the importance of glycan recognition for high-affinity IgG binding. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 833-838.	7.1	117
15	Crystal Structure of the Extracellular Domain of a Human FcÎ ³ RIII. Immunity, 2000, 13, 387-395.	14.3	98
16	αβ T Cell Receptors that Do Not Undergo Major Histocompatibility Complex-Specific Thymic Selection Possess Antibody-like Recognition Specificities. Immunity, 2012, 36, 79-91.	14.3	95
17	Siglecs Facilitate HIV-1 Infection of Macrophages through Adhesion with Viral Sialic Acids. PLoS ONE, 2011, 6, e24559.	2.5	94
18	Structure of killer cell immunoglobulin-like receptors and their recognition of the class I MHC molecules. Immunological Reviews, 2001, 181, 66-78.	6.0	92

#	Article	IF	CITATIONS
19	Pentraxins and <scp>F</scp> c receptors. Immunological Reviews, 2012, 250, 230-238.	6.0	84
20	Characterization of DC-SIGN/R Interaction with Human Immunodeficiency Virus Type 1 gp120 and ICAM Molecules Favors the Receptor's Role as an Antigen-Capturing Rather than an Adhesion Receptor. Journal of Virology, 2005, 79, 4589-4598.	3.4	83
21	High affinity binding of SARS-CoV-2 spike protein enhances ACE2 carboxypeptidase activity. Journal of Biological Chemistry, 2020, 295, 18579-18588.	3.4	82
22	Structure and Function of Natural Killer Cell Surface Receptors. Annual Review of Biophysics and Biomolecular Structure, 2003, 32, 93-114.	18.3	76
23	Crystal Structure of Fcγ Receptor I and Its Implication in High Affinity γ-Immunoglobulin Binding. Journal of Biological Chemistry, 2011, 286, 40608-40613.	3.4	75
24	Molecular constraints on CDR3 for thymic selection of MHC-restricted TCRs from a random pre-selection repertoire. Nature Communications, 2019, 10, 1019.	12.8	72
25	Recognition and functional activation of the human IgA receptor (FcαRI) by C-reactive protein. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4974-4979.	7.1	69
26	High-affinity oligoclonal TCRs define effective adoptive T cell therapy targeting mutant KRAS-G12D. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12826-12835.	7.1	68
27	Structural Implications of Siglec-5-Mediated Sialoglycan Recognition. Journal of Molecular Biology, 2008, 375, 437-447.	4.2	66
28	Crystal Structure of the Human Natural Killer (NK) Cell Activating Receptor NKp46 Reveals Structural Relationship to Other Leukocyte Receptor Complex Immunoreceptors. Journal of Biological Chemistry, 2003, 278, 46081-46086.	3.4	63
29	Crystal Structure of the Human Myeloid Cell Activating Receptor TREM-1. Structure, 2003, 11, 1527-1535.	3.3	61
30	Crystal structure of human natural cytotoxicity receptor NKp30 and identification of its ligand binding site. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6223-6228.	7.1	60
31	Human NK cell receptor KIR2DS4 detects a conserved bacterial epitope presented by HLA-C. Proceedings of the United States of America, 2019, 116, 12964-12973.	7.1	59
32	Pentraxins and Fc Receptor-Mediated Immune Responses. Frontiers in Immunology, 2018, 9, 2607.	4.8	57
33	<i>Plasmodium falciparum</i> –specific IgM B cells dominate in children, expand with malaria, and produce functional IgM. Journal of Experimental Medicine, 2021, 218, .	8.5	44
34	Structure and Function of Natural-Killer-Cell Receptors. Immunologic Research, 2003, 27, 539-548.	2.9	43
35	Overexpression of human transforming growth factor-Î ² 1 using a recombinant CHO cell expression system. Protein Expression and Purification, 2004, 37, 265-272.	1.3	42
36	Generating isomorphous heavy-atom derivatives by a quick-soak method. Part I: test cases. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1092-1098.	2.5	34

#	Article	IF	CITATIONS
37	Targeted lysis of HIV-infected cells by natural killer cells armed and triggered by a recombinant immunoglobulin fusion protein: implications for immunotherapy. Virology, 2005, 332, 491-497.	2.4	33
38	The Structure of the TLR5-Flagellin Complex: A New Mode of Pathogen Detection, Conserved Receptor Dimerization for Signaling. Science Signaling, 2012, 5, pe11.	3.6	31
39	Structural mechanism of high affinity Fcl³ <scp>RI</scp> recognition of immunoglobulin G. Immunological Reviews, 2015, 268, 192-200.	6.0	29
40	Overview of Protein Structural and Functional Folds. Current Protocols in Protein Science, 2004, 35, Unit 17.1.	2.8	25
41	An improved recombinant mammalian cell expression system for human transforming growth factor-β2 and -β3 preparations. Protein Expression and Purification, 2006, 50, 9-17.	1.3	22
42	A rational approach to heavy-atom derivative screening. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 358-365.	2.5	15
43	HIV-1 targets L-selectin for adhesion and induces its shedding for viral release. Nature Communications, 2018, 9, 2825.	12.8	15
44	Development of a Recombinant Bacterial Expression System for the Active Form of a Human Transforming Growth Factor β Type II Receptor Ligand Binding Domain. Protein Expression and Purification, 2000, 20, 98-104.	1.3	14
45	Towards a rational approach for heavy-atom derivative screening in protein crystallography. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 354-367.	2.5	14
46	Mass-spectrometry assisted heavy-atom derivative screening of human Fc ^î ³RIII crystals. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 161-168.	2.5	13
47	T Cell Recognition of Tumor Neoantigens and Insights Into T Cell Immunotherapy. Frontiers in Immunology, 2022, 13, 833017.	4.8	13
48	Pentraxins and IgA share a binding hotâ€spot on FcαRI. Protein Science, 2014, 23, 378-386.	7.6	12
49	HLA-F: A New Kid Licensed for Peptide Presentation. Immunity, 2017, 46, 972-974.	14.3	12
50	Generating isomorphous heavy-atom derivatives by a quick-soak method. Part II: phasing of new structures. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1099-1103.	2.5	11
51	Structure of MHC-Independent TCRs and Their Recognition of Native Antigen CD155. Journal of Immunology, 2020, 204, 3351-3359.	0.8	10
52	A rapid and rational approach to generating isomorphous heavyâ€ a tom phasing derivatives. FEBS Journal, 2014, 281, 4021-4028.	4.7	9
53	Natural Killer Cell-Mediated Shedding of ULBP2. PLoS ONE, 2014, 9, e91133.	2.5	8
54	Structural implications of Siglecâ€5 mediated sialoâ€glycan recognition. FASEB Journal, 2008, 22, 276-276.	0.5	7

#	Article	IF	CITATIONS
55	T cells discriminate between groups C1 and C2 HLA-C. ELife, 2022, 11, .	6.0	5
56	MHC-independent $\hat{I}\pm\hat{I}^2T$ cells: Lessons learned about thymic selection and MHC-restriction. Frontiers in Immunology, 0, 13, .	4.8	4
57	Novel MHC-Independent αβTCRs Specific for CD48, CD102, and CD155 Self-Proteins and Their Selection in the Thymus. Frontiers in Immunology, 2020, 11, 1216.	4.8	3
58	The Role of L-Selectin in HIV Infection. Frontiers in Microbiology, 2021, 12, 725741.	3.5	3
59	Development of an improved mammalian overexpression method for human CD62L. Protein Expression and Purification, 2015, 105, 8-13.	1.3	2
60	Overexpression of Ebola virus envelope GP1 protein. Protein Expression and Purification, 2017, 135, 45-53.	1.3	2
61	High level stable expression of recombinant HIV gp120 in glutamine synthetase gene deficient HEK293T cells. Protein Expression and Purification, 2021, 181, 105837.	1.3	2
62	Meeting Report on Immunoreceptors 2014. FASEB Journal, 2015, 29, 740-744.	0.5	1
63	Over-expression of a human CD62L ecto-domain and a potential role of RNA pseudoknot structures in recombinant protein expression. Protein Expression and Purification, 2017, 140, 65-73.	1.3	1
64	Developing a secretory AcGFP1-based IRES expression system for efficient production of mammalian recombinant proteins. Protein Expression and Purification, 2022, 192, 106029.	1.3	1