
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7407903/publications.pdf Version: 2024-02-01

Ι ΛΙΙΦΛ Δ ΠΛΠΛ

#	Article	IF	CITATIONS
1	Lung Injury Induces Alveolar Type 2 Cell Hypertrophy and Polyploidy with Implications for Repair and Regeneration. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 564-576.	2.9	14
2	Dysregulation of ion transport in the lung epithelium infected with SARS-CoV-2. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L1183-L1185.	2.9	3
3	Maturation of the Na,K-ATPase in the Endoplasmic Reticulum in Health and Disease. Journal of Membrane Biology, 2021, 254, 447-457.	2.1	10
4	TRAF2 Is a Novel Ubiquitin E3 Ligase for the Na,K-ATPase β-Subunit That Drives Alveolar Epithelial Dysfunction in Hypercapnia. Frontiers in Cell and Developmental Biology, 2021, 9, 689983.	3.7	2
5	Hypercapnia Impairs Na,K-ATPase Function by Inducing Endoplasmic Reticulum Retention of the β-Subunit of the Enzyme in Alveolar Epithelial Cells. International Journal of Molecular Sciences, 2020, 21, 1467.	4.1	13
6	Linear ubiquitin assembly complex regulates lung epithelial–driven responses during influenza infection. Journal of Clinical Investigation, 2020, 130, 1301-1314.	8.2	20
7	Hypercapnia-induced calcium dysregulation in the endoplasmic reticulum impairs Na,K-ATPase maturation in precision-cut lung slices and alveolar epithelial cells. , 2020, , .		0
8	Elevated CO2 regulates the Wnt signaling pathway in mammals, Drosophila melanogaster and Caenorhabditis elegans. Scientific Reports, 2019, 9, 18251.	3.3	24
9	Influenza A Virus Infection Induces Muscle Wasting via IL-6 Regulation of the E3 Ubiquitin Ligase Atrogin-1. Journal of Immunology, 2019, 202, 484-493.	0.8	35
10	Splice Wars: The Role of MLCK Isoforms in Ventilation-induced Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 549-550.	2.9	1
11	Ubiquitin-proteasome signaling in lung injury. Translational Research, 2018, 198, 29-39.	5.0	9
12	HIF and HOIL-1L–mediated PKCζ degradation stabilizes plasma membrane Na,K-ATPase to protect against hypoxia-induced lung injury. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10178-E10186.	7.1	48
13	Downregulation of PKCζ/Pard3/Pard6b is responsible for lung adenocarcinoma cell EMT and invasion. Cellular Signalling, 2017, 38, 49-59.	3.6	34
14	FXYD5 Is an Essential Mediator of the Inflammatory Response during Lung Injury. Frontiers in Immunology, 2017, 8, 623.	4.8	27
15	Selective Assembly of Na,K-ATPase α2β2 Heterodimers in the Heart. Journal of Biological Chemistry, 2016, 291, 23159-23174.	3.4	26
16	FXYD5 <i>O-</i> glycosylated ectodomain impairs adhesion by disrupting cell-cell <i>trans</i> -dimerization of Na,K-ATPase β1 subunits. Journal of Cell Science, 2016, 129, 2394-406.	2.0	19
17	FXYD5 Protein Has a Pro-inflammatory Role in Epithelial Cells. Journal of Biological Chemistry, 2016, 291, 11072-11082.	3.4	16
18	Role of Linear Ubiquitination in Health and Disease. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 761-768.	2.9	14

#	Article	lF	CITATIONS
19	High CO ₂ Leads to Na,K-ATPase Endocytosis via c-Jun Amino-Terminal Kinase-Induced LMO7b Phosphorylation. Molecular and Cellular Biology, 2015, 35, 3962-3973.	2.3	29
20	Septin Dynamics Are Essential for Exocytosis. Journal of Biological Chemistry, 2015, 290, 5280-5297.	3.4	68
21	The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nature Immunology, 2015, 16, 458-466.	14.5	60
22	High CO2 Levels Cause Skeletal Muscle Atrophy via AMP-activated Kinase (AMPK), FoxO3a Protein, and Muscle-specific Ring Finger Protein 1 (MuRF1). Journal of Biological Chemistry, 2015, 290, 9183-9194.	3.4	101
23	HOIL-1L Functions as the PKCζ Ubiquitin Ligase to Promote Lung Tumor Growth. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 688-698.	5.6	34
24	Intratracheal administration of influenza virus is superior to intranasal administration as a model of acute lung injury. Journal of Virological Methods, 2014, 209, 116-120.	2.1	26
25	489. Critical Care Medicine, 2014, 42, A1478.	0.9	0
26	The Na-K-ATPase α ₁ β ₁ heterodimer as a cell adhesion molecule in epithelia. American Journal of Physiology - Cell Physiology, 2012, 302, C1271-C1281.	4.6	81
27	Identification of the amino-acid region involved in the intercellular interaction between the Na,K-ATPase β1 subunits. Journal of Cell Science, 2012, 125, 1605-16.	2.0	24
28	Lord of the RING: Ubiquitination and Directed Degradation of Skeletal Muscle in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 795-796.	5.6	3
29	Alcohol Worsens Acute Lung Injury by Inhibiting Alveolar Sodium Transport through the Adenosine A1 Receptor. PLoS ONE, 2012, 7, e30448.	2.5	15
30	Role Of AMP-Activated Protein Kinase (AMPK) In Hypercapnia-Induced Muscle Atrophy. , 2012, , .		1
31	Evolutionary Conserved Role of c-Jun-N-Terminal Kinase in CO2-Induced Epithelial Dysfunction. PLoS ONE, 2012, 7, e46696.	2.5	42
32	Hypercapnia Leads To Muscle Dysfunction Via Ubiquitination. , 2011, , .		0
33	Effects Of Hypercapnia On NA,K-ATPASE Stability And Epithelial Cell Adhesion In Human Alveolar Epithelial Cells. , 2011, , .		0
34	Hypoxia Leads to Na,K-ATPase Downregulation via Ca ²⁺ Release-Activated Ca ²⁺ Channels and AMPK Activation. Molecular and Cellular Biology, 2011, 31, 3546-3556.	2.3	127
35	Mitochondrial Ca2+ and ROS take center stage to orchestrate TNF-α–mediated inflammatory responses. Journal of Clinical Investigation, 2011, 121, 1683-1685.	8.2	62
36	Extracellular signalâ€regulated kinase (ERK) participates in the hypercapniaâ€induced Na,Kâ€ATPase downregulation. FEBS Letters, 2010, 584, 3985-3989.	2.8	42

#	Article	IF	CITATIONS
37	Central Role Of C-Jun N-terminal Kinase In Hypercapnia-induced Alveolar Epithelial Dysfunction. , 2010, , .		0
38	Role Of Protein Kinase C Zeta (PKC¶) In The Na,K-ATPase Regulation During Hypoxia. , 2010, , .		0
39	E3 ubiquitin ligase Mule ubiquitinates Miz1 and is required for TNFα-induced JNK activation. Proceedings of the United States of America, 2010, 107, 13444-13449.	7.1	43
40	Insulin regulates alveolar epithelial function by inducing Na+/K+-ATPase translocation to the plasma membrane in a process mediated by the action of Akt. Journal of Cell Science, 2010, 123, 1343-1351.	2.0	27
41	Role of Ubiquitination in Na,K-ATPase Regulation during Lung Injury. Proceedings of the American Thoracic Society, 2010, 7, 65-70.	3.5	32
42	Endothelin-1 Impairs Alveolar Epithelial Function via Endothelial ET _B Receptor. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 113-122.	5.6	37
43	Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L1120-L1130.	2.9	189
44	α1-AMP-Activated Protein Kinase Regulates Hypoxia-Induced Na,K-ATPase Endocytosis via Direct Phosphorylation of Protein Kinase Cζ. Molecular and Cellular Biology, 2009, 29, 3455-3464.	2.3	107
45	Elevated levels of von Hippelâ€Lindau protein in human and mouse fibrotic lungs. FASEB Journal, 2009, 23, 1025.2.	0.5	0
46	Hypoxiaâ€mediated Naâ€Kâ€ATPase degradation requires von Hippel Lindau protein. FASEB Journal, 2008, 22, 1335-1342.	0.5	35
47	Chapter 7 Regulation of Na,K-ATPase by Reactive Oxygen Species. Current Topics in Membranes, 2008, 61, 131-146.	0.9	0
48	AMP-activated protein kinase regulates CO2-induced alveolar epithelial dysfunction in rats and human cells by promoting Na,K-ATPase endocytosis. Journal of Clinical Investigation, 2008, 118, 752-62.	8.2	146
49	Role of the small GTPase RhoA in the hypoxia-induced decrease of plasma membrane Na,K-ATPase in A549 cells. Journal of Cell Science, 2007, 120, 2214-2222.	2.0	49
50	High CO2 Levels Impair Alveolar Epithelial Function Independently of pH. PLoS ONE, 2007, 2, e1238.	2.5	108
51	Phosphorylation and ubiquitination are necessary for Na,K-ATPase endocytosis during hypoxia. Cellular Signalling, 2007, 19, 1893-1898.	3.6	40
52	Hypoxic Inhibition of Alveolar Fluid Reabsorption. Advances in Experimental Medicine and Biology, 2007, 618, 159-168.	1.6	26
53	HYPERCAPNIA IMPAIRS ALVEOLAR FLUID CLEARANCE VIA PROTEIN KINASE CASCADE SIGNALING. Chest, 2006, 130, 85S.	0.8	0
54	Phosphorylation of Adaptor Protein–2 μ2 Is Essential for Na+,K+-ATPase Endocytosis in Response to Either G Protein–Coupled Receptor or Reactive Oxygen Species. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, 127-132.	2.9	42

#	Article	IF	CITATIONS
55	Hypoxia-Mediated Degradation of Na,K-ATPase via Mitochondrial Reactive Oxygen Species and the Ubiquitin-Conjugating System. Circulation Research, 2006, 98, 1314-1322.	4.5	105
56	Na,Kâ€ATPase α1â€subunit dephosphorylation by protein phosphatase 2A is necessary for its recruitment to the plasma membrane. FASEB Journal, 2006, 20, 2618-2620.	0.5	45
57	Norepinephrine Increases Alveolar Fluid Reabsorption and Na,K-ATPase Activity. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 730-736.	5.6	26
58	Mechanisms of pulmonary edema clearance during acute hypoxemic respiratory failure: Role of the Na,K-ATPase. Critical Care Medicine, 2003, 31, S248-S252.	0.9	47
59	Hypoxia-induced endocytosis of Na,K-ATPase in alveolar epithelial cells is mediated by mitochondrial reactive oxygen species and PKC-ζ. Journal of Clinical Investigation, 2003, 111, 1057-1064.	8.2	244
60	Dopamine-induced Exocytosis of Na,K-ATPase Is Dependent on Activation of Protein Kinase C-ε and -δ. Molecular Biology of the Cell, 2002, 13, 1381-1389.	2.1	90
61	An adrenocorticotropin-regulated phosphoprotein intermediary in steroid synthesis is similar to an acyl-CoA thioesterase enzyme. FEBS Journal, 1998, 256, 60-66.	0.2	37
62	Involvement of arachidonic acid and the lipoxygenase pathway in mediating luteinizing hormone-induced testosterone synthesis in rat leydig cells. Endocrine Research, 1997, 23, 15-26.	1.2	41
63	Site of action of proteinases in the activation of steroidogenesis in rat adrenal gland. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1310, 260-268.	4.1	9
64	Characterization of the cDNA corresponding to a phosphofrotein (p43) intermediary in the action of acth Endocrine Research, 1996, 22, 521-532.	1.2	4
65	cytosolic and mttochondrial proteins as possible targets of cycloheximide effect on adrenal steroidogenesis Endocrine Research, 1996, 22, 533-539.	1.2	3
66	Purification of a Novel 43-kDa Protein (p43) Intermediary in the Activation of Steroidogenesis from Rat Adrenal Gland. FEBS Journal, 1994, 224, 709-716.	0.2	24
67	The cytosol as site of phosphorylation of the cyclic AMP-dependent protein kinase in adrenal steroidogenesis. Journal of Steroid Biochemistry and Molecular Biology, 1991, 39, 889-896.	2.5	12
68	Luteinizing Hormone Triggers a Molecular Association Between Its Receptor and the Major Histocompatibility Complex Class I Antigen to Produce Cell Activation. Endocrinology, 1988, 122, 2080-2083.	2.8	27
69	Leukotrienes as common intermediates in the cyclic AMP dependent and independent pathways in adrenal steroidogenesis. The Journal of Steroid Biochemistry, 1987, 27, 745-751.	1.1	17