
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7407547/publications.pdf Version: 2024-02-01

MIKAEL KNID

#	Article	IF	CITATIONS
1	The Dynamics of the Human Infant Gut Microbiome in Development and in Progression toward Type 1 Diabetes. Cell Host and Microbe, 2015, 17, 260-273.	5.1	1,008
2	Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans. Cell, 2016, 165, 842-853.	13.5	968
3	Seroconversion to Multiple Islet Autoantibodies and Risk of Progression to Diabetes in Children. JAMA - Journal of the American Medical Association, 2013, 309, 2473.	3.8	914
4	Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Science Translational Medicine, 2016, 8, 343ra81.	5.8	763
5	Toward defining the autoimmune microbiome for type 1 diabetes. ISME Journal, 2011, 5, 82-91.	4.4	709
6	Gut Microbiome Metagenomics Analysis Suggests a Functional Model for the Development of Autoimmunity for Type 1 Diabetes. PLoS ONE, 2011, 6, e25792.	1.1	660
7	Fecal Microbiota Composition Differs Between Children With β-Cell Autoimmunity and Those Without. Diabetes, 2013, 62, 1238-1244.	0.3	498
8	Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. Journal of Experimental Medicine, 2008, 205, 2975-2984.	4.2	399
9	Environmental Triggers and Determinants of Type 1 Diabetes. Diabetes, 2005, 54, S125-S136.	0.3	385
10	Maternal vitamin D intake during pregnancy is inversely associated with asthma and allergic rhinitis in 5â€yearâ€old children. Clinical and Experimental Allergy, 2009, 39, 875-882.	1.4	361
11	Safety of high-dose nicotinamide: a review. Diabetologia, 2000, 43, 1337-1345.	2.9	355
12	A Prospective Study of the Role of Coxsackie B and Other Enterovirus Infections in the Pathogenesis of IDDM. Diabetes, 1995, 44, 652-657.	0.3	350
13	Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet, The, 2008, 372, 1746-1755.	6.3	345
14	The role of the intestinal microbiota in type 1 diabetes mellitus. Nature Reviews Endocrinology, 2016, 12, 154-167.	4.3	335
15	Strain-Level Analysis of Mother-to-Child Bacterial Transmission during the First Few Months of Life. Cell Host and Microbe, 2018, 24, 146-154.e4.	5.1	311
16	Feasibility of genetic and immunological prediction of Type I diabetes in a population-based birth cohort. Diabetologia, 2001, 44, 290-297.	2.9	302
17	Valproate, lamotrigine, and insulin-mediated risks in women with epilepsy. Annals of Neurology, 1998, 43, 446-451.	2.8	294
18	Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science, 2019, 366, 599-606.	6.0	294

#	Article	IF	CITATIONS
19	IL-17 Immunity in Human Type 1 Diabetes. Journal of Immunology, 2010, 185, 1959-1967.	0.4	255
20	Antibodies to Lactobacilli and Bifidobacteria in Young Children with Different Propensity to Develop Islet Autoimmunity. Journal of Immunology Research, 2014, 2014, 1-6.	0.9	253
21	Dietary Intervention in Infancy and Later Signs of Beta-Cell Autoimmunity. New England Journal of Medicine, 2010, 363, 1900-1908.	13.9	252
22	Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Frontiers in Microbiology, 2014, 5, 678.	1.5	241
23	Obesity, increased linear growth, and risk of type 1 diabetes in children. Diabetes Care, 2000, 23, 1755-1760.	4.3	235
24	Enterovirus infection as a risk factor for beta-cell autoimmunity in a prospectively observed birth cohort: the Finnish Diabetes Prediction and Prevention Study. Diabetes, 2000, 49, 1314-1318.	0.3	235
25	ConStrains identifies microbial strains in metagenomic datasets. Nature Biotechnology, 2015, 33, 1045-1052.	9.4	235
26	Prediction of insulin-dependent diabetes mellitus in siblings of children with diabetes. A population-based study. The Childhood Diabetes in Finland Study Group Journal of Clinical Investigation, 1998, 101, 327-336.	3.9	235
27	Environmental factors in the etiology of type 1 diabetes. American Journal of Medical Genetics Part A, 2002, 115, 18-29.	2.4	233
28	Coxsackievirus B1 Is Associated With Induction of β-Cell Autoimmunity That Portends Type 1 Diabetes. Diabetes, 2014, 63, 446-455.	0.3	228
29	Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6166-E6175.	3.3	227
30	Introducing the Endotype Concept to Address the Challenge of Disease Heterogeneity in Type 1 Diabetes. Diabetes Care, 2020, 43, 5-12.	4.3	220
31	Cardiovascular Risk in Young Finns. Annals of Medicine, 1991, 23, 35-39.	1.5	217
32	Green areas around homes reduce atopic sensitization in children. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 195-202.	2.7	208
33	Temporal changes in the frequencies of HLA genotypes in patients with Type 1 diabetes—indication of an increased environmental pressure?. Diabetologia, 2003, 46, 420-425.	2.9	206
34	Growth and Biochemical Markers of Growth in Children With Snoring and Obstructive Sleep Apnea. Pediatrics, 2002, 109, e55-e55.	1.0	203
35	Autoimmune mechanisms in type 1 diabetes. Autoimmunity Reviews, 2008, 7, 550-557.	2.5	201
36	Incidence of Type 1 Diabetes in Finland. JAMA - Journal of the American Medical Association, 2013, 310, 427.	3.8	199

#	Article	IF	CITATIONS
37	Genetic, autoimmune, and clinical characteristics of childhood- and adult-onset type 1 diabetes. Diabetes Care, 2000, 23, 1326-1332.	4.3	196
38	Early seroconversion and rapidly increasing autoantibody concentrations predict prepubertal manifestation of type 1 diabetes in children at genetic risk. Diabetologia, 2012, 55, 1926-1936.	2.9	195
39	Validity and Reproducibility of a Food Frequency Questionnaire for Pregnant Finnish Women. American Journal of Epidemiology, 2001, 154, 466-476.	1.6	194
40	MicroRNAs in rheumatoid arthritis: Altered expression and diagnostic potential. Autoimmunity Reviews, 2015, 14, 1029-1037.	2.5	194
41	Epidemiology of childhood diabetes mellitus in Finland ? background of a nationwide study of Type 1 (insulin-dependent) diabetes mellitus. Diabetologia, 1992, 35, 70-76.	2.9	187
42	Nutritional risk predictors of β cell autoimmunity and type 1 diabetes at a young age. American Journal of Clinical Nutrition, 2003, 78, 1053-1067.	2.2	174
43	The First Signs of β-Cell Autoimmunity Appear in Infancy in Genetically Susceptible Children from the General Population: The Finnish Type 1 Diabetes Prediction and Prevention Study. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 4782-4788.	1.8	171
44	Clinical, autoimmune, and genetic characteristics of very young children with type 1 diabetes. Childhood Diabetes in Finland (DiMe) Study Group. Diabetes Care, 1999, 22, 1950-1955.	4.3	166
45	Putative environmental factors in Type 1 diabetes. , 1998, 14, 31-68.		164
46	Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life. Nature Microbiology, 2019, 4, 470-479.	5.9	164
47	Patterns of β-Cell Autoantibody Appearance and Genetic Associations During the First Years of Life. Diabetes, 2013, 62, 3636-3640.	0.3	159
48	Innate Immune Activity Is Detected Prior to Seroconversion in Children With HLA-Conferred Type 1 Diabetes Susceptibility. Diabetes, 2014, 63, 2402-2414.	0.3	158
49	Infant feeding, early weight gain, and risk of type 1 diabetes. Childhood Diabetes in Finland (DiMe) Study Group. Diabetes Care, 1999, 22, 1961-1965.	4.3	156
50	Enterovirus RNA in Blood Is Linked to the Development of Type 1 Diabetes. Diabetes, 2011, 60, 276-279.	0.3	155
51	IA-2 antibodies - a sensitive marker of IDDM with clinical onset in childhood and adolescence. Diabetologia, 1998, 41, 424-429.	2.9	154
52	Autoantibodies associated with Type I diabetes mellitus persist after diagnosis in children. Diabetologia, 1998, 41, 1293-1297.	2.9	154
53	Environmental Triggers of Type 1 Diabetes. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a007690-a007690.	2.9	150
54	Population-based genetic screening for the estimation of Type 1 diabetes mellitus risk in Finland: selective genotyping of markers in the HLA-DQB1, HLA-DQA1 and HLA-DRB1 loci. Diabetic Medicine, 1999, 16, 985-992.	1.2	145

#	Article	IF	CITATIONS
55	Age at introduction of new foods and advanced beta cell autoimmunity in young children with HLA-conferred susceptibility to type 1 diabetes. Diabetologia, 2006, 49, 1512-1521.	2.9	144
56	Valproate-induced hyperandrogenism during pubertal maturation in girls with epilepsy. Annals of Neurology, 1999, 45, 444-450.	2.8	143
57	A sixâ€fold gradient in the incidence of type 1 diabetes at the eastern border of Finland. Annals of Medicine, 2005, 37, 67-72.	1.5	142
58	Hydrolyzed Infant Formula and Early β-Cell Autoimmunity. JAMA - Journal of the American Medical Association, 2014, 311, 2279.	3.8	141
59	Cow's milk formula feeding induces primary immunization to insulin in infants at genetic risk for type 1 diabetes. Diabetes, 1999, 48, 1389-1394.	0.3	140
60	Advanced Glycation End Products Are Direct Modulators of Î ² -Cell Function. Diabetes, 2011, 60, 2523-2532.	0.3	135
61	Natural History of β-Cell Autoimmunity in Young Children with Increased Genetic Susceptibility to Type 1 Diabetes Recruited from the General Population. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 4572-4579.	1.8	134
62	Enterovirus RNA in serum is a risk factor for beta-cell autoimmunity and clinical type 1 diabetes: A prospective study. Journal of Medical Virology, 2000, 61, 214-220.	2.5	133
63	Reduced Prevalence of Diabetic Ketoacidosis at Diagnosis of Type 1 Diabetes in Young Children Participating in Longitudinal Follow-Up. Diabetes Care, 2011, 34, 2347-2352.	4.3	133
64	Gestational Diabetes Identifies Women at Risk for Permanent Type 1 and Type 2 Diabetes in Fertile Age: Predictive role of autoantibodies. Diabetes Care, 2006, 29, 607-612.	4.3	132
65	Infant feeding and the risk of type 1 diabetes. American Journal of Clinical Nutrition, 2010, 91, 1506S-1513S.	2.2	132
66	HLA DR-DQ-encoded genetic determinants of childhood-onset type 1 diabetes in Finland: An analysis of 622 nuclear families. Tissue Antigens, 2003, 62, 162-169.	1.0	128
67	Enterovirus infections are associated with the induction of β-cell autoimmunity in a prospective birth cohort study. Journal of Medical Virology, 2003, 69, 91-98.	2.5	126
68	Virus Antibody Survey in Different European Populations Indicates Risk Association Between Coxsackievirus B1 and Type 1 Diabetes. Diabetes, 2014, 63, 655-662.	0.3	126
69	Lower economic status and inferior hygienic environment may protect against celiac disease. Annals of Medicine, 2008, 40, 223-231.	1.5	125
70	Dietary manipulation of beta cell autoimmunity in infants at increased risk of type 1 diabetes: a pilot study. Diabetologia, 2005, 48, 829-837.	2.9	123
71	Predictive Characteristics of Diabetes-Associated Autoantibodies Among Children With HLA-Conferred Disease Susceptibility in the General Population. Diabetes, 2009, 58, 2835-2842.	0.3	122
72	Ketoacidosis at the diagnosis of type 1 (insulin dependent) diabetes mellitus is related to poor residual beta cell function. Childhood Diabetes in Finland Study Group Archives of Disease in Childhood, 1996, 75, 410-415.	1.0	118

#	Article	IF	CITATIONS
73	Rapid HLA-DQB1 Genotyping for Four Alleles in the Assessment of Risk for IDDM in the Finnish Population. Diabetes Care, 1996, 19, 795-800.	4.3	116
74	Timing of infant feeding in relation to childhood asthma and allergic diseases. Journal of Allergy and Clinical Immunology, 2013, 131, 78-86.	1.5	116
75	Short-term exclusive breastfeeding predisposes young children with increased genetic risk of Type I diabetes to progressive beta-cell autoimmunity. Diabetologia, 2001, 44, 63-69.	2.9	112
76	Microbiome and type 1 diabetes. EBioMedicine, 2019, 46, 512-521.	2.7	111
77	Alterations in Bone Turnover and Impaired Development of Bone Mineral Density in Newly Diagnosed Children with Cancer: A 1-Year Prospective Study. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 3174-3181.	1.8	110
78	Diabetes-Associated Autoantibodies in Relation to Clinical Characteristics and Natural Course in Children with Newly Diagnosed Type 1 Diabetes ¹ . Journal of Clinical Endocrinology and Metabolism, 1999, 84, 1534-1539.	1.8	109
79	A novel common variant in DCST2 is associated with length in early life and height in adulthood. Human Molecular Genetics, 2015, 24, 1155-1168.	1.4	109
80	Prediction of Type 1 Diabetes in the General Population. Diabetes Care, 2010, 33, 1206-1212.	4.3	108
81	Removal of Bovine Insulin From Cow's Milk Formula and Early Initiation of Beta-Cell Autoimmunity in the FINDIA Pilot Study. JAMA Pediatrics, 2012, 166, 608.	3.6	108
82	Cow's milk consumption, HLA-DQB1 genotype, and type 1 diabetes: a nested case-control study of siblings of children with diabetes. Childhood diabetes in Finland study group. Diabetes, 2000, 49, 912-917.	0.3	107
83	Serum Insulin and Other Cardiovascular Risk Indicators in Children, Adolescents and Young Adults. Annals of Medicine, 1991, 23, 67-72.	1.5	106
84	Several different enterovirus serotypes can be associated with prediabetic autoimmune episodes and onset of overt IDDM. , 1998, 56, 74-78.		106
85	Maternal diet during pregnancy and allergic sensitization in the offspring by 5 yrs of age: â€`a prospective cohort study. Pediatric Allergy and Immunology, 2010, 21, 29-37.	1.1	105
86	Effect of Hydrolyzed Infant Formula vs Conventional Formula on Risk of Type 1 Diabetes. JAMA - Journal of the American Medical Association, 2018, 319, 38.	3.8	105
87	Food diversity in infancy and the risk of childhood asthma and allergies. Journal of Allergy and Clinical Immunology, 2014, 133, 1084-1091.	1.5	104
88	A Type 1 Diabetes Genetic Risk Score Predicts Progression of Islet Autoimmunity and Development of Type 1 Diabetes in Individuals at Risk. Diabetes Care, 2018, 41, 1887-1894.	4.3	104
89	Allergic sensitization and microbial loadâ€f–â€fa comparison between Finland and Russian Karelia. Clinical and Experimental Immunology, 2007, 148, 47-52.	1.1	103
90	Maternal intake of vitamin D during pregnancy and risk of advanced beta cell autoimmunity and type 1 diabetes in offspring. Diabetologia, 2010, 53, 1599-1607.	2.9	103

#	Article	IF	CITATIONS
91	Genetic susceptibility to type 1 diabetes in childhoodÂ-Âestimation of HLA class II associated disease risk and class II effect in various phases of islet autoimmunity. Pediatric Diabetes, 2016, 17, 8-16.	1.2	103
92	Maternal Antibodies in Breast Milk Protect the Child From Enterovirus Infections. Pediatrics, 2007, 119, 941-946.	1.0	102
93	Effects of Gluten Intake on Risk of Celiac Disease: A Case-Control Study on a Swedish Birth Cohort. Clinical Gastroenterology and Hepatology, 2016, 14, 403-409.e3.	2.4	102
94	Ketoacidosis at Diagnosis of Type 1 Diabetes in Children in Northern Finland: Temporal changes over 20 years. Diabetes Care, 2007, 30, 861-866.	4.3	99
95	Cystatin C as a marker for glomerular filtration rate in pediatric patients. Pediatric Nephrology, 1999, 13, 506-509.	0.9	97
96	The â€~Hygiene hypothesis' and the sharp gradient in the incidence of autoimmune and allergic diseases between Russian Karelia and Finland. Apmis, 2013, 121, 478-493.	0.9	97
97	Association of Human Bocavirus 1 Infection with Respiratory Disease in Childhood Follow-up Study, Finland. Emerging Infectious Diseases, 2012, 18, 264-271.	2.0	96
98	Lymphoid tyrosine phosphatase (LYP/PTPN22) Arg620Trp variant regulates insulin autoimmunity and progression to type 1 diabetes. Diabetologia, 2006, 49, 1198-1208.	2.9	95
99	Fate of Five Celiac Disease-Associated Antibodies During Normal Diet in Genetically At-Risk Children Observed from Birth in a Natural History Study. American Journal of Gastroenterology, 2007, 102, 2026-2035.	0.2	95
100	Helsinki alert of biodiversity and health. Annals of Medicine, 2015, 47, 218-225.	1.5	95
101	Coxsackievirus B1 infections are associated with the initiation of insulin-driven autoimmunity that progresses to type 1 diabetes. Diabetologia, 2018, 61, 1193-1202.	2.9	95
102	Circulating CXCR5+PD-1+ICOS+ Follicular T Helper Cells Are Increased Close to the Diagnosis of Type 1 Diabetes in Children With Multiple Autoantibodies. Diabetes, 2017, 66, 437-447.	0.3	94
103	Dynamics of Diabetes-Associated Autoantibodies in Young Children with Human Leukocyte Antigen-Conferred Risk of Type 1 Diabetes Recruited from the General Population. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 2712-2717.	1.8	91
104	Food consumption and advanced Î ² cell autoimmunity in young children with HLA-conferred susceptibility to type 1 diabetes: a nested case-control design. American Journal of Clinical Nutrition, 2012, 95, 471-478.	2.2	91
105	ISPAD Clinical Practice Consensus Guidelines 2018: Other complications and associated conditions in children and adolescents with type 1 diabetes. Pediatric Diabetes, 2018, 19, 275-286.	1.2	91
106	New-onset type 1 diabetes in Finnish children during the COVID-19 pandemic. Archives of Disease in Childhood, 2022, 107, 180-185.	1.0	91
107	ISPAD Clinical Practice Consensus Guidelines 2018: Stages of type 1 diabetes in children and adolescents. Pediatric Diabetes, 2018, 19, 20-27.	1.2	89
108	Modulation of Type 1 Diabetes Risk by the Intestinal Microbiome. Current Diabetes Reports, 2017, 17, 105.	1.7	84

#	Article	IF	CITATIONS
109	A combined risk score enhances prediction of type 1 diabetes among susceptible children. Nature Medicine, 2020, 26, 1247-1255.	15.2	83
110	Cord Serum Lipidome in Prediction of Islet Autoimmunity and Type 1 Diabetes. Diabetes, 2013, 62, 3268-3274.	0.3	81
111	Enterovirus antibody levels during the first two years of life in prediabetic autoantibody-positive children. Diabetologia, 2001, 44, 818-823.	2.9	79
112	Predicting Islet Cell Autoimmunity and Type 1 Diabetes: An 8-Year TEDDY Study Progress Report. Diabetes Care, 2019, 42, 1051-1060.	4.3	75
113	Metabolic Regulation in Progression to Autoimmune Diabetes. PLoS Computational Biology, 2011, 7, e1002257.	1.5	74
114	First-phase insulin response in young healthy children at genetic and immunological risk for Type I diabetes. Diabetologia, 2002, 45, 1639-1648.	2.9	73
115	Enhanced levels of cow's milk antibodies in infancy in children who develop type 1 diabetes later in childhood. Pediatric Diabetes, 2008, 9, 434-441.	1.2	73
116	Th1/Th17 Plasticity Is a Marker of Advanced β Cell Autoimmunity and Impaired Glucose Tolerance in Humans. Journal of Immunology, 2015, 194, 68-75.	0.4	73
117	Detection of enteroviruses in stools precedes islet autoimmunity by several months: possible evidence for slowly operating mechanisms in virus-induced autoimmunity. Diabetologia, 2017, 60, 424-431.	2.9	73
118	Plasma 25-Hydroxyvitamin D Concentration and Risk of Islet Autoimmunity. Diabetes, 2018, 67, 146-154.	0.3	72
119	Relationship between the incidence of type 1 diabetes and enterovirus infections in different European populations: Results from the EPIVIR project. Journal of Medical Virology, 2004, 72, 610-617.	2.5	70
120	Natural history of transglutaminase autoantibodies and mucosal changes in children carrying HLA-conferred celiac disease susceptibility. Scandinavian Journal of Gastroenterology, 2005, 40, 1182-1191.	0.6	70
121	Analysis of pancreas tissue in a child positive for islet cell antibodies. Diabetologia, 2008, 51, 1796-1802.	2.9	69
122	Environmental factors in the pathogenesis of type 1 diabetes mellitus. Experimental and Clinical Endocrinology and Diabetes, 1999, 107, S93-S100.	0.6	67
123	PCR inhibition in stool samples in relation to age of infants. Journal of Clinical Virology, 2009, 44, 211-214.	1.6	67
124	Age-Related Differences in the Frequency of Ketoacidosis at Diagnosis of Type 1 Diabetes in Children and Adolescents. Diabetes Care, 2010, 33, 1500-1502.	4.3	67
125	HLA-DQB1-defined genetic susceptibility, beta cell autoimmunity, and metabolic characteristics in familial and nonfamilial insulin-dependent diabetes mellitus. Childhood Diabetes in Finland (DiMe) Study Group Journal of Clinical Investigation, 1996, 98, 2489-2495.	3.9	67
126	Long-term effects of weight reduction on serum lipids and plasma insulin in obese children. American Journal of Clinical Nutrition, 1993, 57, 490-493.	2.2	66

#	Article	IF	CITATIONS
127	Extended Family History of Type 1 Diabetes and Phenotype and Genotype of Newly Diagnosed Children. Diabetes Care, 2013, 36, 348-354.	4.3	66
128	Non-class II HLA gene associated with type 1 diabetes maps to the 240-kb region near HLA-B. Diabetes, 2000, 49, 2217-2221.	0.3	65
129	β-Cell Autoantibodies, Human Leukocyte Antigen II Alleles, and Type 1 Diabetes in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy*. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 4434-4440.	1.8	65
130	Reduced CD4+T cell activation in children with type 1 diabetes carrying the PTPN22/Lyp 620Trp variant. Journal of Autoimmunity, 2008, 31, 13-21.	3.0	65
131	Age-associated DNA methylation changes in immune genes, histone modifiers and chromatin remodeling factors within 5Âyears after birth in human blood leukocytes. Clinical Epigenetics, 2015, 7, 34.	1.8	65
132	Humoral beta-cell autoimmunity in relation to HLA-defined disease susceptibility in preclinical and clinical type 1 diabetes. American Journal of Medical Genetics Part A, 2002, 115, 48-54.	2.4	63
133	Rotavirus infections and development of diabetes-associated autoantibodies during the first 2 years of life. Clinical and Experimental Immunology, 2002, 128, 511-515.	1.1	63
134	Shortâ€ŧerm direct contact with soil and plant materials leads to an immediate increase in diversity of skin microbiota. MicrobiologyOpen, 2019, 8, e00645.	1.2	63
135	Genetic Risk Determines the Emergence of Diabetes-Associated Autoantibodies in Young Children. Diabetes, 2002, 51, 646-651.	0.3	62
136	The Trial to Reduce IDDM in the Genetically at Risk (TRIGR) study: recruitment, intervention and follow-up. Diabetologia, 2011, 54, 627-633.	2.9	62
137	Islet Autoantibody Standardization Program 2018 Workshop: Interlaboratory Comparison of Glutamic Acid Decarboxylase Autoantibody Assay Performance. Clinical Chemistry, 2019, 65, 1141-1152.	1.5	62
138	Epitope spreading and a varying but not disease-specific GAD65 antibody response in Type I diabetes. Diabetologia, 2000, 43, 210-217.	2.9	61
139	Early introduction of oats associated with decreased risk of persistent asthma and early introduction of fish with decreased risk of allergic rhinitis. British Journal of Nutrition, 2010, 103, 266-273.	1.2	61
140	Cow's milk consumption, disease-associated autoantibodies and Type 1 diabetes mellitus: a follow-up study in siblings of diabetic children. Diabetic Medicine, 1998, 15, 730-738.	1.2	60
141	Screening for Type 1 Diabetes in the General Population: A Status Report and Perspective. Diabetes, 2022, 71, 610-623.	0.3	59
142	Diet composition of pregnant Finnish women: changes over time and across seasons. Public Health Nutrition, 2010, 13, 939-946.	1.1	58
143	Gut Virome Sequencing in Children With Early Islet Autoimmunity. Diabetes Care, 2015, 38, 930-933.	4.3	58
144	A High-Throughput Population Screening System for the Estimation of Genetic Risk for Type 1 Diabetes: An Application for the TEDDY (The Environmental Determinants of Diabetes in the Young) Study. Diabetes Technology and Therapeutics, 2007, 9, 460-472.	2.4	57

#	Article	IF	CITATIONS
145	Circulating CXCR5â^'PD-1hi peripheral T helper cells are associated with progression to type 1 diabetes. Diabetologia, 2019, 62, 1681-1688.	2.9	57
146	Increased circulating concentrations of mesencephalic astrocyte-derived neurotrophic factor in children with type 1 diabetes. Scientific Reports, 2016, 6, 29058.	1.6	56
147	Dynamics of Plasma Lipidome in Progression to Islet Autoimmunity and Type 1 Diabetes – Type 1 Diabetes Prediction and Prevention Study (DIPP). Scientific Reports, 2018, 8, 10635.	1.6	56
148	Natural Course of Preclinical Type 1 Diabetes. Hormone Research in Paediatrics, 2002, 57, 6-11.	0.8	55
149	Does the secular increase in body mass in children contribute to the increasing incidence of type 1 diabetes?. Pediatric Diabetes, 2008, 9, 46-49.	1.2	53
150	Viral interference induced by live attenuated virus vaccine (OPV) can prevent otitis media. Vaccine, 2011, 29, 8615-8618.	1.7	53
151	Serum 25-Hydroxyvitamin D Concentrations in Children Progressing to Autoimmunity and Clinical Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 723-729.	1.8	53
152	Fatty acid status in infancy is associated with the risk of type 1 diabetes-associated autoimmunity. Diabetologia, 2017, 60, 1223-1233.	2.9	53
153	Glutamic acid decarboxylase antibodies in relation to other autoantibodies and genetic risk markers in children with newly diagnosed insulin-dependent diabetes. Childhood Diabetes in Finland Study Group Journal of Clinical Endocrinology and Metabolism, 1996, 81, 2455-2459.	1.8	52
154	Estimation of genetic risk for type 1 diabetes. American Journal of Medical Genetics Part A, 2002, 115, 30-36.	2.4	51
155	Early feeding and risk of type 1 diabetes: experiences from the Trial to Reduce Insulin-dependent diabetes mellitus in the Genetically at Risk (TRIGR). American Journal of Clinical Nutrition, 2011, 94, S1814-S1820.	2.2	51
156	Seven distinct dietary patterns identified among pregnant Finnish women – associations with nutrient intake and sociodemographic factors. Public Health Nutrition, 2008, 11, 176-182.	1.1	50
157	Breastfeeding patterns of mothers with type 1 diabetes: results from an infant feeding trial. Diabetes/Metabolism Research and Reviews, 2010, 26, 206-211.	1.7	50
158	Autoantibodies against zinc transporter 8 are related to age, metabolic state and HLA DR genotype in children with newly diagnosed type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2013, 29, 646-654.	1.7	50
159	Non-HLA gene effects on the disease process of type 1 diabetes: From HLA susceptibility to overt disease. Journal of Autoimmunity, 2015, 61, 45-53.	3.0	50
160	Effect of HLA Class I and Class II Alleles on Progression From Autoantibody Positivity to Overt Type 1 Diabetes in Children With Risk-Associated Class II Genotypes. Diabetes, 2010, 59, 3253-3256.	0.3	49
161	HbA1c Predicts Time to Diagnosis of Type 1 Diabetes in Children at Risk. Diabetes, 2015, 64, 1719-1727.	0.3	49
162	Prediction of type 1 diabetes among siblings of affected children and in the general population. Diabetologia, 2007, 50, 2272-2275.	2.9	48

#	Article	IF	CITATIONS
163	Validation of the Finnish ISAAC questionnaire on asthma against anti-asthmatic medication reimbursement database in 5-year-old children. Clinical Respiratory Journal, 2011, 5, 211-218.	0.6	48
164	Phases of type 1 diabetes in children and adolescents. Pediatric Diabetes, 2014, 15, 18-25.	1.2	48
165	Early Infant Diet and Islet Autoimmunity in the TEDDY Study. Diabetes Care, 2018, 41, 522-530.	4.3	48
166	Pathogenesis of Type 1 Diabetes: Implications for Incidence Trends. Hormone Research in Paediatrics, 2011, 76, 57-64.	0.8	47
167	On the Association Between Valproate and Polycystic Ovary Syndrome: A Response and an Alternative $\hat{a} \in f$ View. Epilepsia, 2002, 42, 305-310.	2.6	46
168	Serum Proteomes Distinguish Children Developing Type 1 Diabetes in a Cohort With HLA-Conferred Susceptibility. Diabetes, 2015, 64, 2265-2278.	0.3	46
169	Developing a vaccine for type 1 diabetes by targeting coxsackievirus B. Expert Review of Vaccines, 2018, 17, 1071-1083.	2.0	46
170	Maturation of Gut Microbiota and Circulating Regulatory T Cells and Development of IgE Sensitization in Early Life. Frontiers in Immunology, 2019, 10, 2494.	2.2	46
171	Steroid 21-Hydroxylase Autoantibodies in Insulin-Dependent Diabetes Mellitus. Clinical Immunology and Immunopathology, 1997, 82, 37-42.	2.1	45
172	A multipurpose vector system for the screening of libraries in bacteria, insect and mammalian cells and expression in vivo. Nucleic Acids Research, 2005, 33, e42-e42.	6.5	44
173	Interplay between PTPN22 C1858T polymorphism and cow's milk formula exposure in type 1 diabetes. Journal of Autoimmunity, 2009, 33, 155-164.	3.0	44
174	Early introduction of root vegetables in infancy associated with advanced ßâ€cell autoimmunity in young children with human leukocyte antigenâ€conferred susceptibility to Type 1 diabetes. Diabetic Medicine, 2011, 28, 965-971.	1.2	44
175	Intake of antioxidants during pregnancy and the risk of allergies and asthma in the offspring. European Journal of Clinical Nutrition, 2011, 65, 937-943.	1.3	44
176	POSTINITIAL REMISSION IN DIABETIC CHILDREN– AN ANALYSIS OF 178 CASES. Acta Paediatrica, International Journal of Paediatrics, 1982, 71, 901-908.	0.7	43
177	Insulin autoantibodies at the clinical manifestation of Type 1 (insulin-dependent) diabetes ? a poor predictor of clinical course and antibody response to exogenous insulin. Diabetologia, 1988, 31, 129-133.	2.9	43
178	Receptor for advanced glycation end-products (RAGE) provides a link between genetic susceptibility and environmental factors in type 1 diabetes. Diabetologia, 2011, 54, 1032-1042.	2.9	43
179	The Gut Microbiota Modulates Glycaemic Control and Serum Metabolite Profiles in Non-Obese Diabetic Mice. PLoS ONE, 2014, 9, e110359.	1.1	43
180	Insulin and BMI as Predictors of Adult Type 2 Diabetes Mellitus. Pediatrics, 2015, 135, e144-e151.	1.0	42

#	Article	IF	CITATIONS
181	Metabolic alterations in immune cells associate with progression to type 1 diabetes. Diabetologia, 2020, 63, 1017-1031.	2.9	42
182	The effect of HLA class II, insulin and CTLA4 gene regions on the development of humoral beta cell autoimmunity. Diabetologia, 2005, 48, 1766-1775.	2.9	41
183	Prevalence and characteristics of diabetes among Somali children and adolescents living in Helsinki, Finland. Pediatric Diabetes, 2012, 13, 176-180.	1.2	41
184	A preclinical study on the efficacy and safety of a new vaccine against Coxsackievirus B1 reveals no risk for accelerated diabetes development in mouse models. Diabetologia, 2015, 58, 346-354.	2.9	41
185	Decreased Incidence of Type 1 Diabetes in Young Finnish Children. Diabetes Care, 2020, 43, 2953-2958.	4.3	41
186	Hierarchical Order of Distinct Autoantibody Spreading and Progression to Type 1 Diabetes in the TEDDY Study. Diabetes Care, 2020, 43, 2066-2073.	4.3	41
187	Childhood Cancer and Later Development of the Metabolic Syndrome. Annals of Medicine, 1997, 29, 353-355.	1.5	40
188	GAD65 antibody isotypes and epitope recognition during the prediabetic process in siblings of children with type I diabetes. Clinical and Experimental Immunology, 2004, 136, 120-128.	1.1	40
189	Maternal diet during pregnancy and lactation and cow's milk allergy in offspring. European Journal of Clinical Nutrition, 2016, 70, 554-559.	1.3	40
190	Early childhood infections precede development of beta-cell autoimmunity and type 1 diabetes in children with HLA-conferred disease risk. Pediatric Diabetes, 2018, 19, 293-299.	1.2	40
191	Association of Cereal, Gluten, and Dietary Fiber Intake With Islet Autoimmunity and Type 1 Diabetes. JAMA Pediatrics, 2019, 173, 953.	3.3	40
192	FOXP3+ Regulatory T Cell Compartment Is Altered in Children With Newly Diagnosed Type 1 Diabetes but Not in Autoantibody-Positive at-Risk Children. Frontiers in Immunology, 2019, 10, 19.	2.2	40
193	Pregnancy induces nonimmunoglobulin insulin-binding activity in both maternal and cord blood serum. Clinical and Experimental Immunology, 2001, 124, 190-196.	1.1	39
194	Geographical Variation in Risk HLA-DQB1 Genotypes for Type 1 Diabetes and Signs of Â-Cell Autoimmunity in a High-Incidence Country. Diabetes Care, 2004, 27, 676-681.	4.3	39
195	Maternal Enterovirus Infection as a Risk Factor for Type 1 Diabetes in the Exposed Offspring. Diabetes Care, 2012, 35, 1328-1332.	4.3	39
196	Interaction of enterovirus infection and cow's milkâ€based formula nutrition in type 1 diabetesâ€associated autoimmunity. Diabetes/Metabolism Research and Reviews, 2012, 28, 177-185.	1.7	39
197	Primary islet autoantibody at initial seroconversion and autoantibodies at diagnosis of type 1 diabetes as markers of disease heterogeneity. Pediatric Diabetes, 2018, 19, 284-292.	1.2	39
198	Prospects for primary prevention of type 1 diabetes by restoring a disappearing microbe. Pediatric Diabetes, 2018, 19, 1400-1406.	1.2	39

#	Article	IF	CITATIONS
199	Disease-associated Autoimmunity and Prevention of Insulin-dependent Diabetes Mellitus. Annals of Medicine, 1997, 29, 447-451.	1.5	38
200	Disease-associated autoantibodies and HLA-DQB1 genotypes in children with newly diagnosed insulin-dependent diabetes mellitus (IDDM). Clinical and Experimental Immunology, 1999, 116, 78-83.	1.1	38
201	Antibody responses to deamidated gliadin peptide show high specificity and parallel antibodies to tissue transglutaminase in developing coeliac disease. Clinical and Experimental Immunology, 2007, 150, 285-293.	1.1	38
202	Prenatal exposure to perfluoroalkyl substances modulates neonatal serum phospholipids, increasing risk of type 1 diabetes. Environment International, 2020, 143, 105935.	4.8	38
203	Family history of diabetes and distribution of class II HLA genotypes in children with newly diagnosed type 1 diabetes: effect on diabetic ketoacidosis. European Journal of Endocrinology, 2011, 165, 813-817.	1.9	37
204	Finnish Children Healthy Eating Index (FCHEI) and its associations with family and child child characteristics in pre-school children. Public Health Nutrition, 2014, 17, 2519-2527.	1.1	37
205	Ketoacidosis at diagnosis of type 1 diabetes: Effect of prospective studies with newborn genetic screening and follow up of risk children. Pediatric Diabetes, 2018, 19, 314-319.	1.2	37
206	Early Detection of Peripheral Blood Cell Signature in Children Developing β-Cell Autoimmunity at a Young Age. Diabetes, 2019, 68, 2024-2034.	0.3	37
207	Distribution of insulinâ€dependent diabetes mellitus (IDDM)â€related HLA alleles correlates with the difference in IDDM incidence in four populations of the Eastern Baltic region. Tissue Antigens, 1998, 52, 473-477.	1.0	36
208	Disease-Associated Autoantibodies as Surrogate Markers of Type 1 Diabetes in Young Children at Increased Genetic Risk1. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 1126-1132.	1.8	36
209	Cytomegalovirus infection in early infancy: risk of induction and progression of autoimmunity associated with type 1 diabetes. Diabetologia, 2008, 51, 769-772.	2.9	36
210	Association of CTLA4 but not ICOS polymorphisms with type 1 diabetes in two populations with different disease rates. Human Immunology, 2009, 70, 536-539.	1.2	36
211	Serum fatty acids and risk of advanced β-cell autoimmunity: a nested case–control study among children with HLA-conferred susceptibility to type I diabetes. European Journal of Clinical Nutrition, 2010, 64, 792-799.	1.3	36
212	The methylome of the gut microbiome: disparate Dam methylation patterns in intestinal Bacteroides dorei. Frontiers in Microbiology, 2014, 5, 361.	1.5	36
213	Human enterovirus 71 strains in the background population and in hospital patients in Finland. Journal of Clinical Virology, 2013, 56, 348-353.	1.6	35
214	Standard of hygiene and immune adaptation in newborn infants. Clinical Immunology, 2014, 155, 136-147.	1.4	35
215	Characterization of human organ donors testing positive for type 1 diabetes-associated autoantibodies. Clinical and Experimental Immunology, 2015, 182, 278-288.	1.1	35
216	Dynamics of Islet Autoantibodies During Prospective Follow-Up From Birth to Age 15 Years. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e4638-e4651.	1.8	35

#	Article	IF	CITATIONS
217	Age at Development of Type 1 Diabetes– and Celiac Disease–Associated Antibodies and Clinical Disease in Genetically Susceptible Children Observed From Birth. Diabetes Care, 2010, 33, 774-779.	4.3	34
218	Maternal food consumption during pregnancy and risk of advanced β-cell autoimmunity in the offspring. Pediatric Diabetes, 2011, 12, 95-99.	1.2	34
219	Reduced β-cell function in early preclinical type 1 diabetes. European Journal of Endocrinology, 2016, 174, 251-259.	1.9	34
220	Early Nutrition and Later Diabetes Risk. , 2005, 569, 142-150.		34
221	Islet Cell Antibodies Are Less Predictive of IDDM Among Unaffected Children in the General Population Than in Sibs of Children With Diabetes. Diabetes Care, 1998, 21, 1670-1673.	4.3	33
222	Insulin Autoantibody Isotypes during the Prediabetic Process in Young Children with Increased Genetic Risk of Type 1 Diabetes. Pediatric Research, 2004, 55, 236-242.	1.1	33
223	Microbial Exposure in Infancy and Subsequent Appearance of Type 1 Diabetes Mellitus–Associated Autoantibodies. JAMA Pediatrics, 2014, 168, 755.	3.3	33
224	Type 1 and type 2 diabetes after gestational diabetes: a 23Âyear cohort study. Diabetologia, 2020, 63, 2123-2128.	2.9	33
225	Fungal Dysbiosis and Intestinal Inflammation in Children With Beta-Cell Autoimmunity. Frontiers in Immunology, 2020, 11, 468.	2.2	33
226	OGTT and random plasma glucose in the prediction of type 1 diabetes and time to diagnosis. Diabetologia, 2015, 58, 1787-1796.	2.9	32
227	Serum, plasma and erythrocyte membrane lipidomes in infants fed formula supplemented with bovine milk fat globule membranes. Pediatric Research, 2018, 84, 726-732.	1.1	32
228	Proton Nuclear Magnetic Resonance Spectral Profiles of Urine from Children and Adolescents with Type 1 Diabetes. Clinical Chemistry, 2002, 48, 660-662.	1.5	31
229	Greening of Daycare Yards with Biodiverse Materials Affords Well-Being, Play and Environmental Relationships. International Journal of Environmental Research and Public Health, 2019, 16, 2948.	1.2	31
230	B-Cell Responses to Human Bocaviruses 1–4: New Insights from a Childhood Follow-Up Study. PLoS ONE, 2015, 10, e0139096.	1.1	31
231	Environmental triggers and determinants of beta-cell autoimmunity and type 1 diabetes. Reviews in Endocrine and Metabolic Disorders, 2003, 4, 213-223.	2.6	30
232	The HLA-Bâ^—39 allele increases type 1 diabetes risk conferred by HLA-DRB1â^—04:04-DQB1â^—03:02 and HLA-DRB1â^—08-DQB1â^—04 class II haplotypes. Human Immunology, 2014, 75, 65-70.	1.2	30
233	GIMAP GTPase Family Genes: Potential Modifiers in Autoimmune Diabetes, Asthma, and Allergy. Journal of Immunology, 2015, 194, 5885-5894.	0.4	30
234	Infant Feeding in Relation to the Risk of Advanced Islet Autoimmunity and Type 1 Diabetes in Children With Increased Genetic Susceptibility: A Cohort Study. American Journal of Epidemiology, 2018, 187, 34-44.	1.6	30

#	Article	IF	CITATIONS
235	Probiotic intervention in infancy is not associated with development of beta cell autoimmunity and type 1 diabetes. Diabetologia, 2018, 61, 2668-2670.	2.9	30
236	Circulating metabolites in progression to islet autoimmunity and type 1 diabetes. Diabetologia, 2019, 62, 2287-2297.	2.9	30
237	Persistent Alterations in Plasma Lipid Profiles Before Introduction of Cluten in the Diet Associated With Progression to Celiac Disease. Clinical and Translational Gastroenterology, 2019, 10, e00044.	1.3	30
238	Early exposure to cats, dogs and farm animals and the risk of childhood asthma and allergy. Pediatric Allergy and Immunology, 2020, 31, 265-272.	1.1	30
239	Longitudinal Metabolome-Wide Signals Prior to the Appearance of a First Islet Autoantibody in Children Participating in the TEDDY Study. Diabetes, 2020, 69, 465-476.	0.3	30
240	Early suppression of immune response pathways characterizes children with prediabetes in genome-wide gene expression profiling. Journal of Autoimmunity, 2010, 35, 70-76.	3.0	29
241	Maternal dietary folate, folic acid and vitamin D intakes during pregnancy and lactation and the risk of cows' milk allergy in the offspring. British Journal of Nutrition, 2016, 116, 710-718.	1.2	29
242	Characterisation of rapid progressors to type 1 diabetes among children with HLA-conferred disease susceptibility. Diabetologia, 2017, 60, 1284-1293.	2.9	29
243	Eliminating cows' milk, but not wheat, barley or rye, increases the risk of growth deceleration and nutritional inadequacies. Acta Paediatrica, International Journal of Paediatrics, 2017, 106, 1142-1149.	0.7	29
244	Relation of enteroinsular hormones at birth to macrosomia and neonatal hypoglycemia in infants of diabetic mothers. Journal of Pediatrics, 1983, 103, 603-611.	0.9	28
245	Staging of Preclinical Type 1 Diabetes in Siblings of Affected Children. Pediatrics, 1999, 104, 925-930.	1.0	28
246	Humoral β -cell autoimmunity is rare in patients with the congenital rubella syndrome. Clinical and Experimental Immunology, 2003, 133, 378-383.	1.1	28
247	Intake of vitamin D by Finnish children aged 3 months to 3 years in relation to sociodemographic factors. European Journal of Clinical Nutrition, 2006, 60, 1317-1322.	1.3	28
248	Altered Phenotype of Peripheral Blood Dendritic Cells in Pediatric Type 1 Diabetes. Diabetes Care, 2012, 35, 2303-2310.	4.3	28
249	Clinical, Genetic, and Biochemical Characteristics of Early-Onset Diabetes in the Finnish Population. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3018-3026.	1.8	28
250	Positivity for Zinc Transporter 8 Autoantibodies at Diagnosis Is Subsequently Associated With Reduced β-Cell Function and Higher Exogenous Insulin Requirement in Children and Adolescents With Type 1 Diabetes. Diabetes Care, 2016, 39, 118-121.	4.3	28
251	Serum 25-hydroxyvitamin D concentration in childhood and risk of islet autoimmunity and type 1 diabetes: the TRIGR nested case–control ancillary study. Diabetologia, 2020, 63, 780-787.	2.9	28
252	Distinct Growth Phases in Early Life Associated With the Risk of Type 1 Diabetes: The TEDDY Study. Diabetes Care, 2020, 43, 556-562.	4.3	28

#	Article	IF	CITATIONS
253	Alterations in Bone Turnover and Impaired Development of Bone Mineral Density in Newly Diagnosed Children with Cancer: A 1-Year Prospective Study. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 3174-3181.	1.8	28
254	Can We Predict Type 1 Diabetes in the General Population?. Diabetes Care, 2002, 25, 623-625.	4.3	27
255	Role of humoral beta-cell autoimmunity in type 1 diabetes. Pediatric Diabetes, 2016, 17, 17-24.	1.2	27
256	Islet Autoimmunity and HLA Markers of Presymptomatic and Clinical Type 1 Diabetes: Joint Analyses of Prospective Cohort Studies in Finland, Germany, Sweden, and the U.S Diabetes Care, 2021, 44, 2269-2276.	4.3	27
257	Descriptive epidemiology of type 1 diabetes—is it still in?. Diabetologia, 2012, 55, 1227-1230.	2.9	26
258	An Increase in Serum 25-Hydroxyvitamin D Concentrations Preceded a Plateau in Type 1 Diabetes Incidence in Finnish Children. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2353-E2356.	1.8	26
259	Exploring the risk factors for differences in the cumulative incidence of coeliac disease in two neighboring countries: the prospective DIABIMMUNE study. Digestive and Liver Disease, 2016, 48, 1296-1301.	0.4	26
260	Enhanced influenza A H1N1 T cell epitope recognition and cross-reactivity to protein-O-mannosyltransferase 1 in Pandemrix-associated narcolepsy type 1. Nature Communications, 2021, 12, 2283.	5.8	26
261	Prediction and prevention of type 1 diabetes. Acta Paediatrica, International Journal of Paediatrics, 1998, 87, 54-62.	0.7	25
262	Effect of the <i>PTPN22</i> and <i>INS</i> Risk Genotypes on the Progression to Clinical Type 1 Diabetes After the Initiation of β-Cell Autoimmunity. Diabetes, 2012, 61, 963-966.	0.3	25
263	Development and maturation of norovirus antibodies in childhood. Microbes and Infection, 2016, 18, 263-269.	1.0	25
264	Human Leukocyte Antigen Identity and DQ Risk Alleles in Autoantibody-Positive Siblings of Children With IDDM are Associated With Reduced Early Insulin Response. Diabetes, 1995, 44, 1021-1028.	0.3	24
265	Serum α- and γ-tocopherol concentrations and risk of advanced beta cell autoimmunity in children with HLA-conferred susceptibility to type 1 diabetes mellitus. Diabetologia, 2008, 51, 773-780.	2.9	24
266	Intake of antioxidant vitamins and trace elements during pregnancy and risk of advanced β cell autoimmunity in the child. American Journal of Clinical Nutrition, 2008, 88, 458-464.	2.2	24
267	Human rhinoviruses including group C are common in stool samples of young Finnish children. Journal of Clinical Virology, 2013, 56, 334-338.	1.6	24
268	Analyses of regulatory CD 4 + CD 25 + FOXP 3 + T cells and observations from peripheral T cell subpopulation markers during the development of type 1 diabetes in children. Scandinavian Journal of Immunology, 2016, 83, 279-287.	1.3	24
269	Characteristics of familial type 1 diabetes: effects of the relationship to the affected family member on phenotype and genotype at diagnosis. Diabetologia, 2019, 62, 2025-2039.	2.9	24
270	Development of T cell immunity to norovirus and rotavirus in children under five years of age. Scientific Reports, 2019, 9, 3199.	1.6	24

#	Article	IF	CITATIONS
271	Coxsackievirus counters the host innate immune response by blocking type III interferon expression. Journal of General Virology, 2016, 97, 1368-1380.	1.3	24
272	Role of insulin autoantibody affinity as a predictive marker for type 1 diabetes in young children with HLAâ€conferred disease susceptibility. Diabetes/Metabolism Research and Reviews, 2009, 25, 615-622.	1.7	23
273	The association of the <i>HLAâ€A*24:02, B*39:01</i> and <i>B*39:06</i> alleles with type 1 diabetes is restricted to specific <i>HLAâ€DR/DQ</i> haplotypes in Finns. Hla, 2017, 89, 215-224.	0.4	23
274	Early life origin of type 1 diabetes. Seminars in Immunopathology, 2017, 39, 653-667.	2.8	23
275	Age at Seroconversion, HLA Genotype, and Specificity of Autoantibodies in Progression of Islet Autoimmunity in Childhood. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 4521-4530.	1.8	23
276	An Age-Related Exponential Decline in the Risk of Multiple Islet Autoantibody Seroconversion During Childhood. Diabetes Care, 2021, 44, 2260-2268.	4.3	23
277	A longitudinal plasma lipidomics dataset from children who developed islet autoimmunity and type 1 diabetes. Scientific Data, 2018, 5, 180250.	2.4	23
278	Early epitope- and isotype-specific humoral immune responses to GAD65 in young children with genetic susceptibility to type 1 diabetes. European Journal of Endocrinology, 2006, 155, 633-642.	1.9	22
279	Circulating Vitamin D Concentrations in Two Neighboring Populations With Markedly Different Incidence of Type 1 Diabetes. Diabetes Care, 2006, 29, 1458-1459.	4.3	22
280	Birth weight in newborn infants with different diabetesâ€associated HLA genotypes in three neighbouring countries: Finland, Estonia and Russian Karelia. Diabetes/Metabolism Research and Reviews, 2012, 28, 455-461.	1.7	22
281	Continuous glucose monitoring and HbA1c in the evaluation of glucose metabolism in children at high risk for type 1 diabetes mellitus. Diabetes Research and Clinical Practice, 2016, 120, 89-96.	1.1	22
282	Heterogeneity of maternal characteristics and impact on gestational diabetes (GDM) risk—Implications for universal GDM screening?. Annals of Medicine, 2016, 48, 52-58.	1.5	22
283	Multiâ€locus analysis of HLA class II genes in DR2â€positive IDDM haplotypes in Finland. Tissue Antigens, 1994, 43, 1-6.	1.0	21
284	Human Surfactant Protein – A Gene Locus for Genetic Studies in the Finnish Population. Disease Markers, 2000, 16, 119-124.	0.6	21
285	IA-2 antibody isotypes and epitope specificity during the prediabetic process in children with HLA-conferred susceptibility to type I diabetes. Clinical and Experimental Immunology, 2006, 144, 59-66.	1.1	21
286	Extended Family History of Diabetes and Autoimmune Diseases in Children With and Without Type 1 Diabetes. Diabetes Care, 2011, 34, 115-117.	4.3	21
287	Associations of polymorphisms in non-HLA loci with autoantibodies at the diagnosis of type 1 diabetes:INSandIKZF4associate with insulin autoantibodies. Pediatric Diabetes, 2013, 14, 490-496.	1.2	21
288	No association between vitamin D and βâ€cell autoimmunity in Finnish and Estonian children. Diabetes/Metabolism Research and Reviews, 2014, 30, 749-760.	1.7	21

#	Article	IF	CITATIONS
289	Avoidance of Cow's Milk–Based Formula for At-Risk Infants Does Not Reduce Development of Celiac Disease: A Randomized Controlled Trial. Gastroenterology, 2017, 153, 961-970.e3.	0.6	21
290	Effector T Cell Resistance to Suppression and STAT3 Signaling during the Development of Human Type 1 Diabetes. Journal of Immunology, 2018, 201, 1144-1153.	0.4	21
291	Natural history of preclinical IDDM in high risk siblings. Diabetologia, 1994, 37, 388-393.	2.9	21
292	Parental Reactions to Information About Increased Genetic Risk of Type 1 Diabetes Mellitus in Infants. JAMA Pediatrics, 2006, 160, 1131.	3.6	20
293	Maternal dietary fatty acid intake during pregnancy and the risk of preclinical and clinical type 1 diabetes in the offspring. British Journal of Nutrition, 2014, 111, 895-903.	1.2	20
294	Circulating β cell-specific CD8+ T cells restricted by high-risk HLA class I molecules show antigen experience in children with and at risk of type 1 diabetes. Clinical and Experimental Immunology, 2020, 199, 263-277.	1.1	20
295	Heterogeneity of Type 1 Diabetes at Diagnosis Supports Existence of Age-Related Endotypes. Diabetes Care, 2022, 45, 871-879.	4.3	20
296	Natural course of preclinical type 1 diabetes in siblings of affected children. Acta Paediatrica, International Journal of Paediatrics, 2003, 92, 1403-1410.	0.7	19
297	Relationship of maternal weight status and weight gain rate during pregnancy to the development of advanced beta cell autoimmunity in the offspring: a prospective birth cohort study. Pediatric Diabetes, 2011, 12, 478-484.	1.2	19
298	A comparative study of the effect of UV and formalin inactivation on the stability and immunogenicity of a Coxsackievirus B1 vaccine. Vaccine, 2019, 37, 5962-5971.	1.7	19
299	Combination of three virus-derived nanoparticles as a vaccine against enteric pathogens; enterovirus, norovirus and rotavirus. Vaccine, 2019, 37, 7509-7518.	1.7	19
300	Cord-Blood Lipidome in Progression to Islet Autoimmunity and Type 1 Diabetes. Biomolecules, 2019, 9, 33.	1.8	19
301	Early-life exposure to perfluorinated alkyl substances modulates lipid metabolism in progression to celiac disease. Environmental Research, 2020, 188, 109864.	3.7	19
302	Enterovirus Infections Are Associated With the Development of Celiac Disease in a Birth Cohort Study. Frontiers in Immunology, 2020, 11, 604529.	2.2	19
303	Agreement between parental reports and patient records in food allergies among infants and young children in Finland. Journal of Evaluation in Clinical Practice, 2008, 14, 984-989.	0.9	18
304	Cow's milk allergy and the association between fatty acids and childhood asthma risk. Journal of Allergy and Clinical Immunology, 2014, 134, 488-490.e2.	1.5	18
305	Influenza A virus antibodies show no association with pancreatic islet autoantibodies in children genetically predisposed to type 1 diabetes. Diabetologia, 2015, 58, 2592-2595.	2.9	18
306	A novel rat CVB1-VP1 monoclonal antibody 3A6 detects a broad range of enteroviruses. Scientific Reports, 2018, 8, 33.	1.6	18

#	Article	IF	CITATIONS
307	Longitudinal Pattern of First-Phase Insulin Response Is Associated With Genetic Variants Outside the Class II HLA Region in Children With Multiple Autoantibodies. Diabetes, 2020, 69, 12-19.	0.3	18
308	Growth and development of islet autoimmunity and type 1 diabetes in children genetically at risk. Diabetologia, 2021, 64, 826-835.	2.9	18
309	Circulating Concentrations of Soluble Receptor for AGE Are Associated With Age andAGERGene Polymorphisms in Children With Newly Diagnosed Type 1 Diabetes. Diabetes Care, 2014, 37, 1975-1981.	4.3	17
310	Developing a vaccine for Type 1 diabetes through targeting enteroviral infections. Expert Review of Vaccines, 2014, 13, 989-999.	2.0	17
311	Food consumption and risk of childhood asthma. Pediatric Allergy and Immunology, 2015, 26, 789-796.	1.1	17
312	Maternal fatty acid intake during pregnancy and the development of childhood overweight: a birth cohort study. Pediatric Obesity, 2017, 12, 26-37.	1.4	17
313	Exocrine pancreas function decreases during the progression of the betaâ€cell damaging process in young prediabetic children. Pediatric Diabetes, 2018, 19, 398-402.	1.2	17
314	Sex as a determinant of type 1 diabetes at diagnosis. Pediatric Diabetes, 2018, 19, 1221-1228.	1.2	17
315	Type 1 diabetes linked PTPN22 gene polymorphism is associated with the frequency of circulating regulatory T cells. European Journal of Immunology, 2020, 50, 581-588.	1.6	17
316	Nocturnal Release of Immunoreactive Growth Hormone-Releasing Hormone and Growth Hormone in Normal Children. Pediatric Research, 1989, 26, 404-409.	1.1	16
317	Prevalence and fate of type 1 diabetes-associated autoantibodies in cord blood samples from newborn infants of non-diabetic mothers. Diabetes/Metabolism Research and Reviews, 2002, 18, 57-63.	1.7	16
318	Signs of beta-cell autoimmunity and HLA-defined diabetes susceptibility in the Finnish population: the sib cohort from the Type 1 Diabetes Prediction and Prevention Study. Diabetologia, 2003, 46, 65-70.	2.9	16
319	Characterization of the humoral immune response to islet antigen 2 in children with newly diagnosed type 1 diabetes European Journal of Endocrinology, 2008, 159, 19-26.	1.9	16
320	Sociodemographic and lifestyle characteristics are associated with antioxidant intake and the consumption of their dietary sources during pregnancy. Public Health Nutrition, 2008, 11, 1379-1388.	1.1	16
321	Human parechovirus and the risk of type 1 diabetes. Journal of Medical Virology, 2013, 85, 1619-1623.	2.5	16
322	Transglutaminase antibodies and celiac disease in children with type 1 diabetes and in their family members. Pediatric Diabetes, 2018, 19, 305-313.	1.2	16
323	<scp>HLAâ€DRâ€DQ</scp> haplotypes and specificity of the initial autoantibody in islet specific autoimmunity. Pediatric Diabetes, 2020, 21, 1218-1226.	1.2	16
324	Contrasting microbiotas between Finnish and Estonian infants: Exposure to <i>Acinetobacter</i> may contribute to the allergy gap. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2342-2351.	2.7	16

#	Article	IF	CITATIONS
325	Land Cover of Early-Life Environment Modulates the Risk of Type 1 Diabetes. Diabetes Care, 2021, 44, 1506-1514.	4.3	16
326	Extended family history of autoimmune diseases and phenotype and genotype of children with newly diagnosed type 1 diabetes. European Journal of Endocrinology, 2013, 169, 171-178.	1.9	15
327	Natural Development of Antibodies against Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis Protein Antigens during the First 13 Years of Life. Vaccine Journal, 2016, 23, 878-883.	3.2	15
328	Serum carotenoid and tocopherol concentrations and risk of asthma in childhood: a nested case–control study. Clinical and Experimental Allergy, 2017, 47, 401-409.	1.4	15
329	Regional differences in milk and complementary feeding patterns in infants participating in an international nutritional type 1 diabetes prevention trial. Maternal and Child Nutrition, 2017, 13, .	1.4	15
330	HLA and non-HLA genes and familial predisposition to autoimmune diseases in families with a child affected by type 1 diabetes. PLoS ONE, 2017, 12, e0188402.	1.1	15
331	Formalin treatment increases the stability and immunogenicity of coxsackievirus B1 VLP vaccine. Antiviral Research, 2019, 171, 104595.	1.9	15
332	A Joint Modeling Approach for Childhood Meat, Fish and Egg Consumption and the Risk of Advanced Islet Autoimmunity. Scientific Reports, 2019, 9, 7760.	1.6	15
333	Diet, Gut, and Type 1 Diabetes: Role of Wheat-Derived Peptides?. Diabetes, 2009, 58, 1723-1724.	0.3	14
334	Co-occurrence of allergic sensitization and type 1 diabetes. Annals of Medicine, 2010, 42, 352-359.	1.5	14
335	Maternal intake of fatty acids and their food sources during lactation and the risk of preclinical and clinical type 1 diabetes in the offspring. Acta Diabetologica, 2015, 52, 763-772.	1.2	14
336	Effect of polymorphism in the insulin gene region on IDDM susceptibility and insulin secretion. European Journal of Clinical Investigation, 1996, 26, 847-852.	1.7	13
337	Fatty acids in serum and diet – a canonical correlation analysis among toddlers. Maternal and Child Nutrition, 2013, 9, 381-395.	1.4	13
338	Risk genes and autoantibodies in Egyptian children with type 1 diabetes – low frequency of autoantibodies in carriers of the HLAâ€DRB1*04:05â€DQA1*03â€DQB1*02 risk haplotype. Diabetes/Metabolism Research and Reviews, 2015, 31, 287-294.	1.7	13
339	Vitamin D intake during the first 4 years and onset of asthma by age 5: A nested caseâ€control study. Pediatric Allergy and Immunology, 2017, 28, 641-648.	1.1	13
340	Characterization and non-parametric modeling of the developing serum proteome during infancy and early childhood. Scientific Reports, 2018, 8, 5883.	1.6	13
341	New Coxsackievirus 2Apro and 3Cpro protease antibodies for virus detection and discovery of pathogenic mechanisms. Journal of Virological Methods, 2018, 255, 29-37.	1.0	13
342	Carotenoid Intake and Serum Concentration in Young Finnish Children and Their Relation with Fruit and Vegetable Consumption. Nutrients, 2018, 10, 1533.	1.7	13

#	Article	IF	CITATIONS
343	Early childhood CMV infection may decelerate the progression to clinical type 1 diabetes. Pediatric Diabetes, 2019, 20, 73-77.	1.2	13
344	Mucosal-associated invariant T cell alterations during the development of human type 1 diabetes. Diabetologia, 2020, 63, 2396-2409.	2.9	13
345	Characterization of Proinsulin T Cell Epitopes Restricted by Type 1 Diabetes–Associated HLA Class II Molecules. Journal of Immunology, 2020, 204, 2349-2359.	0.4	13
346	Expansion of CD4+CD25+FOXP3+ regulatory T cells in infants of mothers with type 1 diabetes. Pediatric Diabetes, 2012, 13, 400-407.	1.2	12
347	Decrease in Circulating Concentrations of Soluble Receptors for Advanced Glycation End Products at the Time of Seroconversion to Autoantibody Positivity in Children With Prediabetes. Diabetes Care, 2015, 38, 665-670.	4.3	12
348	Enterovirus-associated changes in blood transcriptomic profiles of children with genetic susceptibility to type 1 diabetes. Diabetologia, 2018, 61, 381-388.	2.9	12
349	Serum 25-Hydroxyvitamin D Concentrations at Birth in Children Screened for HLA-DQB1 Conferred Risk for Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 2277-2285.	1.8	12
350	Association between family history, early growth and the risk of beta cell autoimmunity in children at risk for type 1 diabetes. Diabetologia, 2021, 64, 119-128.	2.9	12
351	Exposure to per- and polyfluoroalkyl substances associates with an altered lipid composition of breast milk. Environment International, 2021, 157, 106855.	4.8	12
352	Putative environmental factors in Type 1 diabetes. Diabetes/metabolism Reviews, 1998, 14, 31-68.	0.4	12
353	INNODIA Master Protocol for the evaluation of investigational medicinal products in children, adolescents and adults with newly diagnosed type 1 diabetes. Trials, 2022, 23, 414.	0.7	12
354	Evaluation of Growth Hormone Secretion and Treatment. Annals of Medicine, 1992, 24, 237-247.	1.5	11
355	Circulating IGF1 and IGFBP3 in relation to the development of β-cell autoimmunity in young children. European Journal of Endocrinology, 2015, 173, 129-137.	1.9	11
356	Characteristics of Slow Progression to Type 1 Diabetes in Children With Increased HLA-Conferred Disease Risk. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 5585-5594.	1.8	11
357	Earlyâ€life exposure to common virus infections did not differ between coeliac disease patients and controls. Acta Paediatrica, International Journal of Paediatrics, 2019, 108, 1709-1716.	0.7	11
358	No evidence of the role of early chemical exposure in the development of $\hat{1}^2$ -cell autoimmunity. Environmental Science and Pollution Research, 2019, 26, 1370-1378.	2.7	11
359	Impact of Intranasal Insulin on Insulin Antibody Affinity and Isotypes in Young Children With HLA-Conferred Susceptibility to Type 1 Diabetes. Diabetes Care, 2011, 34, 1383-1388.	4.3	10
360	Transmission disequilibrium analysis of 31 type 1 diabetes susceptibility loci in Finnish families. Tissue Antigens, 2013, 82, 35-42.	1.0	10

#	Article	IF	CITATIONS
361	Development of atopic sensitization in Finnish and Estonian children: AÂlatent class analysis in a multicenter cohort. Journal of Allergy and Clinical Immunology, 2019, 143, 1904-1913.e9.	1.5	10
362	Serum fatty acids and risk of developing islet autoimmunity: A nested <scp>case–control</scp> study within the <scp>TRIGR</scp> birth cohort. Pediatric Diabetes, 2021, 22, 577-585.	1.2	10
363	Should We Screen for Risk of Type 1 Diabetes?. Diabetes Care, 2008, 31, 622-623.	4.3	9
364	Enterovirus infections in early childhood and the risk of atopic disease - a nested case-control study. Clinical and Experimental Allergy, 2012, 43, n/a-n/a.	1.4	9
365	Role of enterovirus infections in IgE sensitization. Journal of Medical Virology, 2012, 84, 268-271.	2.5	9
366	Maternal antioxidant intake during pregnancy and the development of cows' milk allergy in the offspring. British Journal of Nutrition, 2021, 125, 1386-1393.	1.2	9
367	Type 1 diabetes in Finland: past, present, and future. Lancet Diabetes and Endocrinology,the, 2021, 9, 259-260.	5.5	9
368	Family history of type 2 diabetes and characteristics of children with newly diagnosed type 1 diabetes. Diabetologia, 2021, 64, 581-590.	2.9	9
369	Early DNA methylation changes in children developing beta cell autoimmunity at a young age. Diabetologia, 2022, 65, 844-860.	2.9	9
370	Metabolic characteristics and urine albumin excretion rate in relation to pubertal maturation in Type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2000, 16, 269-275.	1.7	8
371	From Genetic Risk Awareness to Overt Type 1 Diabetes: Parental stress in a placebo-controlled prevention trial. Diabetes Care, 2009, 32, 2181-2183.	4.3	8
372	Investigation of CTLA-4-318C/T gene polymorphism in cases with type 1 diabetes of Azerbaijan, Northwest Iran. Immunology Letters, 2015, 166, 134-139.	1.1	8
373	Structural Insight into CVB3-VLP Non-Adjuvanted Vaccine. Microorganisms, 2020, 8, 1287.	1.6	8
374	Association of diabetes-related autoantibodies with the incidence of asthma, eczema and allergic rhinitis in the TRIGR randomised clinical trial. Diabetologia, 2020, 63, 1796-1807.	2.9	8
375	Consumption of differently processed milk products in infancy and early childhood and the risk of islet autoimmunity. British Journal of Nutrition, 2020, 124, 173-180.	1.2	8
376	Effect of Early Feeding on Intestinal Permeability and Inflammation Markers in Infants with Genetic Susceptibility to Type 1 Diabetes: AÂRandomized Clinical Trial. Journal of Pediatrics, 2021, 238, 305-311.e3.	0.9	8
377	Associations between deduced first islet specific autoantibody with sex, age at diagnosis and genetic risk factors in young children with type 1 diabetes. Pediatric Diabetes, 2022, 23, 693-702.	1.2	8
378	Soluble RAGE Prevents Type 1 Diabetes Expanding Functional Regulatory T Cells. Diabetes, 2022, 71, 1994-2008.	0.3	8

#	Article	IF	CITATIONS
379	Defective HLA class II expression in monocytes of type 1 diabetic patients. Apmis, 1993, 101, 395-402.	0.9	7
380	Prepubertal girls with insulin-dependent diabetes mellitus have higher exogenous insulin requirement than boys. European Journal of Pediatrics, 1998, 157, 708-711.	1.3	7
381	Unaltered antioxidant activity of plasma in subjects at increased risk for IDDM. Free Radical Research, 1998, 29, 159-164.	1.5	7
382	Cow's milk and the new trials for prevention of Type 1 diabetes. Journal of Endocrinological Investigation, 2003, 26, 265-267.	1.8	7
383	Recruitment and retention of participants for an international type 1 diabetes prevention trial: A coordinators' perspective. Clinical Trials, 2014, 11, 150-158.	0.7	7
384	CD4 ⁺ T-cell proliferation responses to wheat polypeptide stimulation in children at different stages of type 1 diabetes autoimmunity. Pediatric Diabetes, 2015, 16, 177-188.	1.2	7
385	Human enterovirus and rhinovirus infections are associated with otitis media in a prospective birth cohort study. Journal of Clinical Virology, 2016, 85, 1-6.	1.6	7
386	A drop in the circulating concentrations of soluble receptor for advanced glycation end products is associated with seroconversion to autoantibody positivity but not with subsequent progression to clinical disease in children en route to type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2017, 33, e2872.	1.7	7
387	Loss of β-cell mass — an acute event before T1DM presentation?. Nature Reviews Endocrinology, 2017, 13, 253-254.	4.3	7
388	Class II HLA Genotype Association With First-Phase Insulin Response Is Explained by Islet Autoantibodies. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 2870-2878.	1.8	7
389	No Association Between Ljungan Virus Seropositivity and the Beta-cell Damaging Process in the Finnish Type 1 Diabetes Prediction and Prevention Study Cohort. Pediatric Infectious Disease Journal, 2019, 38, 314-316.	1.1	7
390	Early childhood infections and the use of antibiotics and antipyreticâ€analgesics in Finland, Estonia and Russian Karelia. Acta Paediatrica, International Journal of Paediatrics, 2019, 108, 2075-2082.	0.7	7
391	Host Cell Calpains Can Cleave Structural Proteins from the Enterovirus Polyprotein. Viruses, 2019, 11, 1106.	1.5	7
392	Guidance for the Conduct and Reporting of Clinical Trials of Breast Milk Substitutes. JAMA Pediatrics, 2020, 174, 874.	3.3	7
393	Antibody Responses against Enterovirus Proteases are Potential Markers for an Acute Infection. Viruses, 2020, 12, 78.	1.5	7
394	Tri-SNP polymorphism in the intron of HLA-DRA1 affects type 1 diabetes susceptibility in the Finnish population. Human Immunology, 2021, 82, 912-916.	1.2	7
395	Infections and systemic inflammation are associated with lower plasma concentration of insulin-like growth factor I among Malawian children. American Journal of Clinical Nutrition, 2021, 113, 380-390.	2.2	7
396	Heterogeneity of DKA Incidence and Age-Specific Clinical Characteristics in Children Diagnosed With Type 1 Diabetes in the TEDDY Study. Diabetes Care, 2022, 45, 624-633.	4.3	7

#	Article	IF	CITATIONS
397	Relation Between Antibodies to Islet Cell Antigens, Other Autoantigens and Cow's Milk Proteins in Diabetic Children and Unaffected Siblings at the Clinical Manifestation of IDDM. Autoimmunity, 1996, 23, 165-174.	1.2	6
398	Validation of a questionnaire on cow's milk allergy: parental reports and physician's diagnosis. Acta Paediatrica, International Journal of Paediatrics, 2010, 99, 1273-1275.	0.7	6
399	Feasibility and compliance in a nutritional primary prevention trial in infants at increased risk for type 1 diabetes. Acta Paediatrica, International Journal of Paediatrics, 2011, 100, 557-564.	0.7	6
400	Rhinoviruses in infancy and risk of immunoglobulin E sensitization. Journal of Medical Virology, 2019, 91, 1470-1478.	2.5	6
401	Maternal Nitrate and Nitrite Intakes during Pregnancy and Risk of Islet Autoimmunity and Type 1 Diabetes: The DIPP Cohort Study. Journal of Nutrition, 2020, 150, 2969-2976.	1.3	6
402	Do Rural Second Homes Shape Commensal Microbiota of Urban Dwellers? A Pilot Study among Urban Elderly in Finland. International Journal of Environmental Research and Public Health, 2021, 18, 3742.	1.2	6
403	Increasing plasma glucose before the development of type 1 diabetes—the <scp>TRICR</scp> study. Pediatric Diabetes, 2021, 22, 974-981.	1.2	6
404	Autoantibodies to N-terminally Truncated GAD65(96-585): HLA Associations and Predictive Value for Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e935-e946.	1.8	6
405	Reclassification of asymptomatic beta cell autoimmunity: a critical perspective. Diabetologia, 2017, 60, 39-42.	2.9	5
406	Live attenuated enterovirus vaccine (OPV) is not associated with islet autoimmunity in children with genetic susceptibility to type 1 diabetes: prospective cohort study. Diabetologia, 2018, 61, 203-209.	2.9	5
407	Multiplexed High-Throughput Serological Assay for Human Enteroviruses. Microorganisms, 2020, 8, 963.	1.6	5
408	Association of Picornavirus Infections With Acute Otitis Media in a Prospective Birth Cohort Study. Journal of Infectious Diseases, 2020, 222, 324-332.	1.9	5
409	Enhancing and neutralizing antiâ€coxsackievirus activities in serum samples from patients prior to development of type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2020, 36, e3305.	1.7	5
410	Maternal Vitamin C and Iron Intake during Pregnancy and the Risk of Islet Autoimmunity and Type 1 Diabetes in Children: A Birth Cohort Study. Nutrients, 2021, 13, 928.	1.7	5
411	Generation of self-reactive, shared T-cell receptor $\hat{I}\pm$ chains in the human thymus. Journal of Autoimmunity, 2021, 119, 102616.	3.0	5
412	Consumption of differently processed milk products and the risk of asthma in children. Pediatric Allergy and Immunology, 2022, 33, .	1.1	5
413	Effect of extensively hydrolyzed casein vs. conventional formula on the risk of asthma and allergies: The TRIGR randomized clinical trial. Pediatric Allergy and Immunology, 2021, 32, 670-678.	1.1	5
414	Seasonality in the manifestation of type 1 diabetes varies according to age at diagnosis in Finnish children. Acta Paediatrica, International Journal of Paediatrics, 2022, 111, 1061-1069.	0.7	5

#	Article	lF	CITATIONS
415	Heterogeneity in the presentation of clinical type 1 diabetes defined by the level of risk conferred by human leukocyte antigen class II genotypes. Pediatric Diabetes, 2022, 23, 219-227.	1.2	5
416	Non-HLA Gene Polymorphisms in the Pathogenesis of Type 1 Diabetes: Phase and Endotype Specific Effects. Frontiers in Immunology, 0, 13, .	2.2	5
417	The TRIGR Trial: Testing the Potential Link between Weaning Diet and Type 1 Diabetes. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2007, 7, 251-263.	0.5	4
418	Type 1 diabetes mellitus is a heterogeneous disease. Nature Reviews Endocrinology, 2017, 13, 1-1.	4.3	4
419	Enterovirus infection during pregnancy is inversely associated with atopic disease in the offspring. Clinical and Experimental Allergy, 2018, 48, 1698-1704.	1.4	4
420	Extended family history of type 1 diabetes in <scp>HLA</scp> â€predisposed children with and without islet autoantibodies. Pediatric Diabetes, 2020, 21, 1447-1456.	1.2	4
421	Serological evaluation of the role of cytomegalovirus in the pathogenesis of IDDM: a prospective study. Diabetologia, 1995, 38, 705-710.	2.9	4
422	Determining the timing of pubertal onset via a multicohort analysis of growth. PLoS ONE, 2021, 16, e0260137.	1.1	4
423	Permutation-based significance analysis reduces the type 1 error rate in bisulphite sequencing data analysis of human umbilical cord blood samples. Epigenetics, 2022, 17, 1608-1627.	1.3	4
424	Umbilical cord blood DNA methylation in children who later develop type 1 diabetes. Diabetologia, 2022, 65, 1534-1540.	2.9	4
425	Growth differences between North American and European children at risk for type 1 diabetes. Pediatric Diabetes, 2012, 13, 425-431.	1.2	3
426	A novel processing-based classification and conventional food grouping to estimate milk product consumption in Finnish children. International Dairy Journal, 2018, 86, 96-102.	1.5	3
427	Coeliac disease and HLAâ€conferred susceptibility to autoimmunity are associated with IgE sensitization in young children. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 692-694.	2.7	3
428	Diabetic Ketoacidosis at the Time of Diagnosis of Type 1 Diabetes in Children. JAMA Pediatrics, 2021, 175, 518.	3.3	3
429	Breastfeeding and circulating immunological markers during the first 3Âyears of life: the DIABIMMUNE study. Diabetologia, 2022, 65, 329-335.	2.9	3
430	Viral infectionâ€related gene upregulation in monocytes in children with signs of βâ€cell autoimmunity. Pediatric Diabetes, 2022, 23, 703-713.	1.2	3
431	Impact of Extensively Hydrolyzed Infant Formula on Circulating Lipids During Early Life. Frontiers in Nutrition, 2022, 9, .	1.6	3
432	No Evidence of an Accelerated Absorption of Exogenous Insulin After Using a Subcutaneous Catheter for 5 Days in Children With IDDM: Responae to Wredling et al. Diabetes Care, 1994, 17, 627-627.	4.3	2

#	Article	IF	CITATIONS
433	Etiopathogenetic Aspects of Type 1 Diabetes. , 2005, 10, 1-27.		2
434	Early introduction of complementary foods: is there a link with Type 1 diabetes?. Diabetes Management, 2013, 3, 53-59.	0.5	2
435	Environmental Trigger(s) of Type 1 Diabetes: Why Is It So Difficult to Identify?. BioMed Research International, 2015, 2015, 1-2.	0.9	2
436	The role of vitamin D in the aetiology of type 1 diabetes. Reply to Korsgren O [letter]. Diabetologia, 2020, 63, 1281-1282.	2.9	2
437	Allergy-Related Symptoms Are Poorly Predicted by IgE and Skin Prick Testing in Early Life. International Archives of Allergy and Immunology, 2021, 182, 574-584.	0.9	2
438	Immunomodulatory Effects of Rhinovirus and Enterovirus Infections During the First Year of Life. Frontiers in Immunology, 2020, 11, 567046.	2.2	2
439	Frailty modeling under a selective sampling protocol: anÂapplication to type 1 diabetes related autoantibodies. Statistics in Medicine, 2021, 40, 6410-6420.	0.8	2
440	Prediction and prevention of type 1 diabetes. , 0, 87, 54.		2
441	Maternal energy-adjusted fatty acid intake during pregnancy and the development of cows' milk allergy in the offspring. British Journal of Nutrition, 2022, 128, 1607-1614.	1.2	2
442	Maternal breast milk microbiota and immune markers in relation to subsequent development of celiac disease in offspring. Scientific Reports, 2022, 12, 6607.	1.6	2
443	Exploring Minimally Invasive Approach to Define Stages of Type 1 Diabetes Remotely. Diabetes Technology and Therapeutics, 2022, 24, 655-665.	2.4	2
444	Exposomic determinants of immune-mediated diseases. Environmental Epidemiology, 2022, 6, e212.	1.4	2
445	Hormonal enteroinsular axis in newborn infants of insulin-treated diabetic mothers Journal of Clinical Endocrinology and Metabolism, 1993, 77, 1340-1344.	1.8	1
446	The pre-school child with diabetes: a cross-cultural survey of dietary habits and parental attitudes. Practical Diabetes International: the International Journal for Diabetes Care Teams Worldwide, 2005, 22, 87-92iii.	0.2	1
447	Childhood Obesity and Juvenile Diabetes. , 2011, , 289-295.		1
448	Microbe-based approaches for the treatment of diabetes. Diabetes Management, 2015, 5, 139-142.	0.5	1
449	Lipidomics of human umbilical cord serum: identification of unique sterol sulfates. Future Science OA, 2017, 3, FSO193.	0.9	1
450	Metabolically inactive insulin: friend or foe in the prevention of autoimmune diabetes?. Diabetologia, 2017, 60, 1382-1384.	2.9	1

#	Article	IF	CITATIONS
451	Reply to "Antibiotics, intestinal dysbiosis and risk of celiac disease―by Hakim Rahmoune et al. [Digestive and Liver Disease]. Digestive and Liver Disease, 2017, 49, 106-107.	0.4	1
452	Type 1 diabetes—origins and epidemiology. Lancet Diabetes and Endocrinology,the, 2020, 8, 368-369.	5.5	1
453	Higher circulating EGF levels associate with a decreased risk of IgE sensitization in young children. Pediatric Allergy and Immunology, 2021, , .	1.1	1
454	Cow's milk consumption, disease-associated autoantibodies and Type 1 diabetes mellitus: a follow-up study in siblings of diabetic children. , 1998, 15, 730.		1
455	Environmental Determinants. , 2008, , 63-84.		1
456	Type 1 Diabetes in Children With Genetic Risk May Be Predicted Very Early With a Blood miRNA. Diabetes Care, 2022, , .	4.3	1
457	Heterogeneity of beta-cell function in subjects with multiple islet autoantibodies in the TEDDY family prevention study - TEFA. Clinical Diabetes and Endocrinology, 2021, 7, 23.	1.3	1
458	1032 Dietary Fatty Acid Composition During Pregnancy and Risk of Asthma in the Offspring. Pediatric Research, 2010, 68, 513-513.	1.1	0
459	Insulin analogues for recurrent severe hypoglycaemia. Lancet Diabetes and Endocrinology,the, 2014, 2, 529-530.	5.5	0
460	Heterogeneity in diabetes-associated autoantibodies and susceptibility to Type 1 diabetes: lessons for disease prevention. Expert Review of Endocrinology and Metabolism, 2015, 10, 25-34.	1.2	0
461	In Memoriam Professor Emeritus Hans K. Ãkerblom. Pediatric Diabetes, 2019, 20, 1045-1046.	1.2	0
462	Letter to the Editor from Pölläen et al: "Birth Cohorts in Type 1 Diabetes: Preparing for the Payoffâ€. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e3787-e3788.	1.8	0
463	Dietary compliance in a randomized doubleâ€blind infant feeding trial during infancy aiming at prevention of type 1 diabetes. Food Science and Nutrition, 2021, 9, 4221-4231.	1.5	0
464	Association of different enteroviruses with atopy and allergic diseases in early childhood. Pediatric Allergy and Immunology, 2021, 32, 1629-1636.	1.1	0
465	The Role of Insulin-like Growth Factor Binding Proteins (IGFBPs) in Insulin-Dependent Diabetic Children. Clinical Pediatric Endocrinology, 1994, 3, 241-241.	0.4	0
466	33. Formula feeding and diabetes risk. Human Health Handbooks, 2014, , 531-544.	0.1	0
467	IDDM prevention trials in progress–a critical assessment. Journal of Pediatric Endocrinology and Metabolism, 1998, 11 Suppl 2, 371-7.	0.4	0
468	Associations Between Serum Fatty Acids and Immunological Markers in Children Developing Islet Autoimmunity—The TRIGR Nested Case–Control Study. Frontiers in Immunology, 2022, 13, .	2.2	0