
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7407273/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enzyme kinetics, molecular docking, and in silico characterization of canary seed (Phalaris) Tj ETQq1 1 0.784314	<u> </u>	
	2022, 88, 104892.	3.4	30
2	Intermittent antibiotic treatment accelerated the development of colitis in IL-10 knockout mice. Biomedicine and Pharmacotherapy, 2022, 146, 112486.	5.6	5
3	Oxidative Stress Protection by Canary Seed (Phalaris canariensis L.) Peptides in Caco-2 Cells and Caenorhabditis elegans. Nutrients, 2022, 14, 2415.	4.1	2
4	Serum carotenoids and Pediatric Metabolic Index predict insulin sensitivity in Mexican American children. Scientific Reports, 2021, 11, 871.	3.3	6
5	Inulin Fermentable Fiber Ameliorates Type I Diabetes via IL22 and Short-Chain Fatty Acids in Experimental Models. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 983-1000.	4.5	33
6	Anthocyanin-containing purple potatoes ameliorate DSS-induced colitis in mice. Journal of Nutritional Biochemistry, 2021, 93, 108616.	4.2	30
7	Targeted Phenolic Characterization and Antioxidant Bioactivity of Extracts from Edible Acheta domesticus. Foods, 2021, 10, 2295.	4.3	36
8	Role of Gut Microbiota in the Antiâ€Colitic Effects of Anthocyaninâ€Containing Potatoes. Molecular Nutrition and Food Research, 2021, 65, e2100152.	3.3	5
9	Anthocyanin-Containing Purple Potatoes Ameliorate DSS-Induced Colitis in Mice. Current Developments in Nutrition, 2020, 4, nzaa045_059.	0.3	3
10	Maize Flavan-4-ols and Anthocyanins Alleviated Dextran Sulfate Sodium-Induced Colitis in Mice via Intestinal Barrier Function Restoration. Current Developments in Nutrition, 2020, 4, nzaa045_121.	0.3	3
11	Identification and Characterization of Edible Cricket Peptides on Hypertensive and Glycemic In Vitro Inhibition and Their Anti-Inflammatory Activity on RAW 264.7 Macrophage Cells. Nutrients, 2020, 12, 3588.	4.1	34
12	Enhancement of phenolic compounds extraction from grape pomace by high voltage atmospheric cold plasma. LWT - Food Science and Technology, 2020, 133, 109970.	5.2	61
13	A 90 day oral toxicity study of blueberry polyphenols in ovariectomized sprague-dawley rats. Food and Chemical Toxicology, 2020, 139, 111254.	3.6	22
14	Development of cold plasma pretreatment for improving phenolics extractability from tomato pomace. Innovative Food Science and Emerging Technologies, 2020, 65, 102445.	5.6	74
15	Potential Metabolite Biomarkers for Acute Versus Chronic Stage of Ischemic Stroke: A Pilot Study. Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 104618.	1.6	19
16	Intestinal Mucosal Barrier Function Restoration in Mice by Maize Diet Containing Enriched Flavan-4-Ols. Nutrients, 2020, 12, 896.	4.1	15
17	Characterization of Maize Near-Isogenic Lines With Enhanced Flavonoid Expression to Be Used as Tools in Diet-Health Complexity. Frontiers in Plant Science, 2020, 11, 619598.	3.6	12
18	A swine model of soy protein–induced food allergenicity: implications in human and swine nutrition. Animal Frontiers, 2019, 9, 52-59.	1.7	11

#	Article	IF	CITATIONS
19	The Anti-inflammatory Effects of Dietary Anthocyanins against Ulcerative Colitis. International Journal of Molecular Sciences, 2019, 20, 2588.	4.1	78
20	Potato: an Anti-Inflammatory Food. American Journal of Potato Research, 2019, 96, 164-169.	0.9	19
21	Antiâ€inflammatory Effect of Table Grapes in Apc(Min/+) Mouse Model of Intestinal Tumorigenesis. FASEB Journal, 2019, 33, 872.2.	0.5	1
22	Grain and sweet sorghum (<i>Sorghum bicolor</i> L. Moench) serves as a novel source of bioactive compounds for human health. Critical Reviews in Food Science and Nutrition, 2018, 58, 2867-2881.	10.3	58
23	A food-based approach that targets interleukin-6, a key regulator of chronic intestinal inflammation and colon carcinogenesis. Journal of Nutritional Biochemistry, 2017, 43, 11-17.	4.2	30
24	Genetics of serum carotenoid concentrations and their correlation with obesity-related traits in Mexican American children. American Journal of Clinical Nutrition, 2017, 106, 52-58.	4.7	16
25	Pigs, Unlike Mice, Have Two Distinct Colonic Stem Cell Populations Similar to Humans That Respond to High-Calorie Diet prior to Insulin Resistance. Cancer Prevention Research, 2017, 10, 442-450.	1.5	10
26	Eugenia jambolana (Java Plum) Fruit Extract Exhibits Anti-Cancer Activity against Early Stage Human HCT-116 Colon Cancer Cells and Colon Cancer Stem Cells. Cancers, 2016, 8, 29.	3.7	60
27	Pro-apoptotic activity against cancer stem cells differs between different parts of sweet sorghum. Journal of Functional Foods, 2016, 23, 601-613.	3.4	6
28	Grape compounds suppress colon cancer stem cells in vitro and in a rodent model of colon carcinogenesis. BMC Complementary and Alternative Medicine, 2016, 16, 278.	3.7	55
29	Indian gooseberry (Emblica officinalis Gaertn.) suppresses cell proliferation and induces apoptosis in human colon cancer stem cells independent of p53 status via suppression of c-Myc and cyclin D1. Journal of Functional Foods, 2016, 25, 267-278.	3.4	17
30	The Use of Low-Dose Electron-Beam Irradiation and Storage Conditions for Sprout Control and their Effects on Xanthophylls, Antioxidant Capacity, and Phenolics in the Potato Cultivar Atlantic. American Journal of Potato Research, 2015, 92, 609-618.	0.9	11
31	Triphala Extract Suppresses Proliferation and Induces Apoptosis in Human Colon Cancer Stem Cells via Suppressing c-Myc/Cyclin D1 and Elevation of Bax/Bcl-2 Ratio. BioMed Research International, 2015, 2015, 1-12.	1.9	47
32	Effect of Salinity Stress and Surfactant Treatment on Physiological Traits and Nutrient Absorption of Fenugreek Plant. Communications in Soil Science and Plant Analysis, 2015, 46, 2807-2820.	1.4	5
33	Anthocyanin-containing purple-fleshed potatoes suppress colon tumorigenesis via elimination of colon cancer stem cells. Journal of Nutritional Biochemistry, 2015, 26, 1641-1649.	4.2	97
34	Characterization of Microbial Dysbiosis and Metabolomic Changes in Dogs with Acute Diarrhea. PLoS ONE, 2015, 10, e0127259.	2.5	135
35	Effect of Genotype and Storage on Glycoalkaloid and Acrylamide Content and Sensory Attributes of Potato Chips. American Journal of Potato Research, 2014, 91, 632-641.	0.9	14
36	American <scp>I</scp> ndia <scp>P</scp> ale <scp>A</scp> le matrix rich in xanthohumol is potent in suppressing proliferation and elevating apoptosis of human colon cancer cells. International Journal of Food Science and Technology, 2014, 49, 2464-2471.	2.7	9

#	Article	IF	CITATIONS
37	Colon carcinogenesis: Influence of Western diet-induced obesity and targeting stem cells using dietary bioactive compounds. Nutrition, 2014, 30, 1242-1256.	2.4	49
38	The Dermal Layer of Sweet Sorghum (<i>Sorghum bicolor</i>) Stalk, a Byproduct of Biofuel Production and Source of Unique 3-Deoxyanthocyanidins, Has More Antiproliferative and Proapoptotic Activity than the Pith in p53 Variants of HCT116 and Colon Cancer Stem Cells. Journal of Agricultural and Food Chemistry, 2014, 62, 3150-3159.	5.2	34
39	Purpleâ€fleshed potatoes suppress colonâ€systemic oxidative stress/inflammatory markers via alternations in the gut bacterial signature. FASEB Journal, 2013, 27, 1056.9.	0.5	4
40	Combined Effects of Storage and Processing on the Bioactive Compounds and Pro-Apoptotic Properties of Color-Fleshed Potatoes in Human Colon Cancer Cells. Journal of Agricultural and Food Chemistry, 2012, 60, 11088-11096.	5.2	57
41	Anthocyanins as Apoptotic Regulators. , 2012, , 93-122.		4
42	Mitigation of Obesity-Promoted Diseases by Nigella sativa and Thymoquinone. Plant Foods for Human Nutrition, 2012, 67, 111-119.	3.2	25
43	Resveratrol and grape seed extract combination elevates apoptosis in the colon cancer stem cells, even in the presence of IGF $\hat{a}\in I$, via P53 dependent pathway. FASEB Journal, 2012, 26, 822.13.	0.5	2
44	Purple potato, even after processing, suppress oxidative stress and inflammatory markers in highâ€fat diet consuming pigs. FASEB Journal, 2012, 26, 823.5.	0.5	1
45	Storage Elevates Phenolic Content and Antioxidant Activity but Suppresses Antiproliferative and Pro-apoptotic Properties of Colored-Flesh Potatoes against Human Colon Cancer Cell Lines. Journal of Agricultural and Food Chemistry, 2011, 59, 8155-8166.	5.2	75
46	Resveratrol potentiates grape seed extract induced human colon cancer cell apoptosis. Frontiers in Bioscience - Elite, 2011, E3, 1509-1523.	1.8	27
47	Resveratrol suppresses human colon cancer cell proliferation and induces apoptosis via targeting the pentose phosphate and the talin-FAK signaling pathways-A proteomic approach. Proteome Science, 2011, 9, 49.	1.7	57
48	Purple potatoes suppress proâ€inflammatory eicosanoids in the distal colon of obese pigs consuming highâ€fat diet. FASEB Journal, 2011, 25, .	0.5	0
49	Grape Seed Extract Potentiates Resveratrol Induced Human Cancer Cell Apoptosis via Activation of p53â€Dependent Signaling Pathway. FASEB Journal, 2011, 25, 235.7.	0.5	0
50	Cooking Methods and Storage Treatments of Potato: Effects on Carotenoids, Antioxidant Activity, and Phenolics. American Journal of Potato Research, 2010, 87, 479-491.	0.9	114
51	Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways. BMC Cancer, 2010, 10, 238.	2.6	200
52	The Bioactive Compounds α-Chaconine and Gallic Acid in Potato Extracts Decrease Survival and Induce Apoptosis in LNCaP and PC3 Prostate Cancer Cells. Nutrition and Cancer, 2010, 62, 601-610.	2.0	62
53	Antiproliferative Activity and Cytotoxicity of Solanum jamesii Tuber Extracts on Human Colon and Prostate Cancer Cellsin Vitro. Journal of Agricultural and Food Chemistry, 2009, 57, 8308-8315.	5.2	30
54	Interspecific Variability for Antioxidant Activity and Phenolic Content Among Solanum Species. American Journal of Potato Research, 2008, 85, 332.	0.9	34

#	Article	IF	CITATIONS
55	Anthocyanin fraction from potato extracts is cytotoxic to prostate cancer cells through activation of caspase-dependent and caspase-independent pathways. Carcinogenesis, 2007, 28, 2227-2235.	2.8	159
56	Genotype, Location, and Year Influence Antioxidant Activity, Carotenoid Content, Phenolic Content, and Composition in Specialty Potatoes. Journal of Agricultural and Food Chemistry, 2007, 55, 8073-8079.	5.2	87
57	Determination of phenolic content, composition and their contribution to antioxidant activity in specialty potato selections. American Journal of Potato Research, 2007, 84, 275-282.	0.9	79
58	The effects of low-dose gamma irradiation and storage time on carotenoids, antioxidant activity, and phenolics in the potato cultivar atlantic. American Journal of Potato Research, 2007, 84, 125-131.	0.9	14
59	Variation in the content of bioactive flavonoids in different brands of orange and grapefruit juices. Journal of Food Composition and Analysis, 2006, 19, 157-166.	3.9	114
60	IDENTIFICATION OF COMPOUNDS CONTRIBUTING TO ANTIOXIDANT ACTIVITY IN SPECIALTY POTATOES (Solanum tuberosum L.). Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 873f-874.	1.0	0
61	Identification of Specialty Potato Selections with High Antioxidant Activity. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 812C-812.	1.0	0
62	Variation in Bioactive Flavonoid Content of Commercial Brands of Orange Juices. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 858C-858.	1.0	0