

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7407190/publications.pdf Version: 2024-02-01

ZENC YI

#	Article	IF	CITATIONS
1	Bio-responsive alginate-keratin composite nanogels with enhanced drug loading efficiency for cancer therapy. Carbohydrate Polymers, 2017, 175, 159-169.	5.1	84
2	Preparation of Strong Antioxidative, Therapeutic Nanoparticles Based on Amino Acid-Induced Ultrafast Assembly of Tea Polyphenols. ACS Applied Materials & Interfaces, 2020, 12, 33550-33563.	4.0	76
3	Tumor-targeted and nitric oxide-generated nanogels of keratin and hyaluronan for enhanced cancer therapy. Nanoscale, 2018, 10, 12109-12122.	2.8	61
4	Size-controlled, colloidally stable and functional nanoparticles based on the molecular assembly of green tea polyphenols and keratins for cancer therapy. Journal of Materials Chemistry B, 2018, 6, 1373-1386.	2.9	56
5	Cellulose/keratin–catechin nanocomposite hydrogel for wound hemostasis. Journal of Materials Chemistry B, 2018, 6, 6133-6141.	2.9	49
6	Green Tea Polyphenol-Stabilized Gel-Like High Internal Phase Pickering Emulsions. ACS Sustainable Chemistry and Engineering, 2021, 9, 4076-4090.	3.2	49
7	Synthesis and characterization of injectable self-healing hydrogels based on oxidized alginate-hybrid-hydroxyapatite nanoparticles and carboxymethyl chitosan. International Journal of Biological Macromolecules, 2020, 165, 1164-1174.	3.6	47
8	Functional nanoparticles of tea polyphenols for doxorubicin delivery in cancer treatment. Journal of Materials Chemistry B, 2017, 5, 7622-7631.	2.9	45
9	DOX-assisted functionalization of green tea polyphenol nanoparticles for effective chemo-photothermal cancer therapy. Journal of Materials Chemistry B, 2019, 7, 4066-4078.	2.9	43
10	Epigallocatechin gallate-based nanoparticles with reactive oxygen species scavenging property for effective chronic periodontitis treatment. Chemical Engineering Journal, 2022, 433, 132197.	6.6	40
11	Modular Assembly of Versatile Nanoparticles with Epigallocatechin Gallate. ACS Sustainable Chemistry and Engineering, 2020, 8, 9833-9845.	3.2	35
12	Biocompatible, Antioxidant Nanoparticles Prepared from Natural Renewable Tea Polyphenols and Human Hair Keratins for Cell Protection and Anti-inflammation. ACS Biomaterials Science and Engineering, 2021, 7, 1046-1057.	2.6	32
13	Alginate-Mediated Mineralization for Ultrafine Hydroxyapatite Hybrid Nanoparticles. Langmuir, 2018, 34, 6797-6805.	1.6	31
14	Carrier-Enhanced Photodynamic Cancer Therapy of Self-Assembled Green Tea Polyphenol-Based Nanoformulations. ACS Sustainable Chemistry and Engineering, 2020, 8, 16372-16384.	3.2	28
15	Polyphenol Nanoparticles from Commonly Consumed Tea for Scavenging Free Radicals, Stabilizing Pickering Emulsions, and Inhibiting Cancer Cells. ACS Applied Nano Materials, 2021, 4, 652-665.	2.4	26
16	General Nanomedicine Platform by Solvent-Mediated Disassembly/Reassembly of Scalable Natural Polyphenol Colloidal Spheres. ACS Applied Materials & Interfaces, 2020, 12, 37914-37928.	4.0	25
17	Delicate Assembly of Ultrathin Hydroxyapatite Nanobelts with Nanoneedles Directed by Dissolved Cellulose. Inorganic Chemistry, 2018, 57, 4516-4523.	1.9	22
18	Alginate-Assisted Mineralization of Collagen by Collagen Reconstitution and Calcium Phosphate Formation. ACS Biomaterials Science and Engineering, 2020, 6, 3275-3286.	2.6	22

Zeng Yi

#	Article	IF	CITATIONS
19	RhBMP-2 and concomitant rapid material degradation synergistically promote bone repair and regeneration with collagen–hydroxyapatite nanocomposites. Journal of Materials Chemistry B, 2018, 6, 4338-4350.	2.9	21
20	Natural polysaccharide-incorporated hydroxyapatite as size-changeable, nuclear-targeted nanocarrier for efficient cancer therapy. Biomaterials Science, 2020, 8, 5390-5401.	2.6	20
21	Size Changeable Nanomedicines Assembled by Noncovalent Interactions of Responsive Small Molecules for Enhancing Tumor Therapy. ACS Applied Materials & Interfaces, 2022, 14, 26431-26442.	4.0	18
22	Biologically inspired, catechol-coordinated, hierarchical organization of raspberry-like calcium phosphate nanospheres with high specific surface area. Journal of Materials Chemistry B, 2018, 6, 3811-3819.	2.9	16
23	Freeze–thaw cycles for biocompatible, mechanically robust scaffolds of human hair keratins. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1452-1461.	1.6	15
24	Polymerization-Induced Self-Assembly of Tea Polyphenols into Open-Mouthed Nanoparticles for Active Delivery Systems and Stable Carbon Bowls. ACS Applied Nano Materials, 2021, 4, 13510-13522.	2.4	13
25	Micro-/Nanomechanics Dependence of Biomimetic Matrices upon Collagen-Based Fibrillar Aggregation and Arrangement. Biomacromolecules, 2020, 21, 3547-3560.	2.6	12
26	Developing exquisite collagen fibrillar assemblies in the presence of keratin nanoparticles for improved cellular affinity. International Journal of Biological Macromolecules, 2021, 189, 380-390.	3.6	12
27	Green tea polyphenol nanoparticle as a novel adsorbent to remove Pb2+ from wastewater. Materials Letters, 2021, 284, 128986.	1.3	7
28	Dual stimuli-responsive nanocarriers based on polyethylene glycol-mediated schiff base interactions for overcoming tumour chemoresistance. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112408.	2.5	5