Dries Knapen

List of Publications by Citations

Source: https://exaly.com/author-pdf/7406950/dries-knapen-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

47 papers 1,535 26 h-index g-index

47 thicken 1,535 26 h-index g-index

47 thicken 1,756 thicken 1,756 avg, IF thicken 1,756 thicken 1,756 avg, IF thicken 1,535 thicken

#	Paper	IF	Citations
47	Drought Induces Distinct Growth Response, Protection, and Recovery Mechanisms in the Maize Leaf Growth Zone. <i>Plant Physiology</i> , 2015 , 169, 1382-96	6.6	116
46	Toxicity evaluation of perfluorooctane sulfonate (PFOS) in the liver of common carp (Cyprinus carpio). <i>Aquatic Toxicology</i> , 2008 , 88, 155-63	5.1	112
45	Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels. <i>Global Change Biology</i> , 2014 , 20, 3670-85	11.4	111
44	The chronic toxicity of ZnO nanoparticles and ZnCl2 to Daphnia magna and the use of different methods to assess nanoparticle aggregation and dissolution. <i>Nanotoxicology</i> , 2014 , 8, 709-17	5.3	84
43	The potential of AOP networks for reproductive and developmental toxicity assay development. <i>Reproductive Toxicology</i> , 2015 , 56, 52-5	3.4	69
42	The chronic toxicity of CuO nanoparticles and copper salt to Daphnia magna. <i>Journal of Hazardous Materials</i> , 2015 , 283, 416-22	12.8	66
41	Metallothionein gene and protein expression as a biomarker for metal pollution in natural gudgeon populations. <i>Aquatic Toxicology</i> , 2007 , 82, 163-72	5.1	59
40	Bioaccumulation of micropollutants and biomarker responses in caged carp (Cyprinus carpio). <i>Ecotoxicology and Environmental Safety</i> , 2009 , 72, 720-8	7	55
39	The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios. <i>Water Research</i> , 2015 , 68, 249-61	12.5	50
38	Aquatic acute species sensitivity distributions of ZnO and CuO nanoparticles. <i>Science of the Total Environment</i> , 2015 , 526, 233-42	10.2	45
37	Differential hepatic metal and metallothionein levels in three Feral fish species along a metal pollution gradient. <i>PLoS ONE</i> , 2013 , 8, e60805	3.7	44
36	Temperature dependence of long-term cadmium toxicity in the zebrafish is not explained by liver oxidative stress: evidence from transcript expression to physiology. <i>Aquatic Toxicology</i> , 2013 , 126, 52-63	2 ^{5.1}	41
35	Unraveling the mode of action of an obesogen: mechanistic analysis of the model obesogen tributyltin in the 3T3-L1 cell line. <i>Molecular and Cellular Endocrinology</i> , 2013 , 370, 52-64	4.4	40
34	Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part II: Zebrafish. <i>Aquatic Toxicology</i> , 2016 , 173, 204-217	5.1	38
33	PFOS affects posterior swim bladder chamber inflation and swimming performance of zebrafish larvae. <i>Aquatic Toxicology</i> , 2014 , 157, 225-35	5.1	37
32	Deiodinase knockdown during early zebrafish development affects growth, development, energy metabolism, motility and phototransduction. <i>PLoS ONE</i> , 2015 , 10, e0123285	3.7	37
31	Resistance to water pollution in natural gudgeon (Gobio gobio) populations may be due to genetic adaptation. <i>Aquatic Toxicology</i> , 2004 , 67, 155-65	5.1	37

(2018-2011)

30	The search for alternative aqueous film forming foams (AFFF) with a low environmental impact: physiological and transcriptomic effects of two Forafac([]) fluorosurfactants in turbot. <i>Aquatic Toxicology</i> , 2011 , 104, 168-76	5.1	36	
29	Gene transcription patterns and energy reserves in Daphnia magna show no nanoparticle specific toxicity when exposed to ZnO and CuO nanoparticles. <i>Environmental Research</i> , 2015 , 138, 82-92	7.9	32	
28	Toxicogenomics in the 3T3-L1 cell line, a new approach for screening of obesogenic compounds. <i>Toxicological Sciences</i> , 2014 , 140, 352-63	4.4	32	
27	Best practices for hybridization design in two-colour microarray analysis. <i>Trends in Biotechnology</i> , 2009 , 27, 406-14	15.1	32	
26	Microarray-based transcriptomic analysis of differences between long-term gregarious and solitarious desert locusts. <i>PLoS ONE</i> , 2011 , 6, e28110	3.7	30	
25	Genetic diversity and condition factor: a significant relationship in Flemish but not in German populations of the European bullhead (Cottus gobio L.). <i>Heredity</i> , 2002 , 89, 280-7	3.6	29	
24	Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part I: Fathead minnow. <i>Aquatic Toxicology</i> , 2016 , 173, 192-203	5.1	28	
23	Incubation at 32.5°C and above causes malformations in the zebrafish embryo. <i>Reproductive Toxicology</i> , 2015 , 56, 56-63	3.4	28	
22	Conservation units based on mitochondrial and nuclear DNA variation among European bullhead populations (Cottus gobio L., 1758) from Flanders, Belgium. <i>Conservation Genetics</i> , 2003 , 4, 129-140	2.6	27	
21	Chemical hazard prediction and hypothesis testing using quantitative adverse outcome pathways. <i>ALTEX: Alternatives To Animal Experimentation</i> , 2019 , 36, 91-102	4.3	23	
20	Gene expression profiling of three different stressors in the water flea Daphnia magna. <i>Ecotoxicology</i> , 2013 , 22, 900-14	2.9	20	
19	ERadiation Stress Responses on Growth and Antioxidative Defense System in Plants: A Study with Strontium-90 in Lemna minor. <i>International Journal of Molecular Sciences</i> , 2015 , 16, 15309-27	6.3	18	
18	An AOP-based alternative testing strategy to predict the impact of thyroid hormone disruption on swim bladder inflation in zebrafish. <i>Aquatic Toxicology</i> , 2018 , 200, 1-12	5.1	17	
17	Assessing the impact of thermal acclimation on physiological condition in the zebrafish model. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2013 , 183, 109-21	2.2	17	
16	Physiological and molecular effect assessment versus physico-chemistry based mode of action schemes: Daphnia magna exposed to narcotics and polar narcotics. <i>Environmental Science & Environmental Science & Technology</i> , 2012 , 46, 10-8	10.3	15	
15	Toward an AOP Network-Based Tiered Testing Strategy for the Assessment of Thyroid Hormone Disruption. <i>Environmental Science & Environmental Science &</i>	10.3	14	
14	Ecdysone signaling and transcript signature in Drosophila cells resistant against methoxyfenozide. <i>Journal of Insect Physiology</i> , 2010 , 56, 1973-85	2.4	14	
13	From mRNA Expression of Drug Disposition Genes to In Vivo Assessment of CYP-Mediated Biotransformation during Zebrafish Embryonic and Larval Development. International Journal of Molecular Sciences 2018, 19	6.3	13	

12	Mechanistic evaluation of the insulin response in H4IIE hepatoma cells: new endpoints for toxicity testing?. <i>Toxicology Letters</i> , 2012 , 212, 180-9	4.4	11
11	Historical metal pollution in natural gudgeon populations: Inferences from allozyme, microsatellite and condition factor analysis. <i>Aquatic Toxicology</i> , 2009 , 95, 17-26	5.1	11
10	Effect of Thyroperoxidase and Deiodinase Inhibition on Anterior Swim Bladder Inflation in the Zebrafish. <i>Environmental Science & Environmental Scienc</i>	10.3	11
9	ERGO: Breaking Down the Wall between Human Health and Environmental Testing of Endocrine Disrupters. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	10
8	The influence of different spatial-scale variables on caddisfly assemblages in Flemish lowland streams. <i>Ecological Entomology</i> , 2011 , 36, 355-368	2.1	10
7	Bacterial gene profiling assay applied as an alternative method for mode of action classification: pilot study using chlorinated anilines. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 1059-68	3.8	6
6	Isolation and characterization of polymorphic microsatellite loci in the gudgeon, Gobio gobio (Cyprinidae). <i>Molecular Ecology Notes</i> , 2006 , 6, 387-389		3
5	Optimizing the Use of Zebrafish Feeding Trials for the Safety Evaluation of Genetically Modified Crops. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	2
4	High microsatellite genetic variability of the stone loach, Barbatula barbatula, in anthropogenically disturbed watercourses. <i>Fisheries Management and Ecology</i> , 2009 , 16, 112-120	1.8	2
3	Adverse Outcome Pathways and the Paradox of Complex Simplicity. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 2950-2952	3.8	1
2	Mass Spectrometry-Based Zebrafish Toxicometabolomics: A Review of Analytical and Data Quality Challenges. <i>Metabolites</i> , 2021 , 11,	5.6	1
1	Sublethal Effect Concentrations for Nonpolar Narcosis in the Zebrafish Embryo. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 2802-2812	3.8	1