Stefanie Hoehl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7406567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coupling between prefrontal brain activity and respiratory sinus arrhythmia in infants and adults. Developmental Cognitive Neuroscience, 2022, 53, 101047.	1.9	2
2	Natural infant-directed speech facilitates neural tracking of prosody. NeuroImage, 2022, 251, 118991.	2.1	20
3	When it pays off to take a look: Infants learn to follow an object's motion with their gaze—Especially if it features eyes. Infancy, 2022, , .	0.9	0
4	DEEP: A dual EEG pipeline for developmental hyperscanning studies. Developmental Cognitive Neuroscience, 2022, 54, 101104.	1.9	12
5	Neural Entrainment vs. Stimulus-Tracking: A Conceptual Challenge for Rhythmic Perceptual Stimulation in Developmental Neuroscience. Frontiers in Psychology, 2022, 13, .	1.1	4
6	Lexical Access Speed and the Development of Phonological Recoding during Immediate Serial Recall. Journal of Cognition and Development, 2022, 23, 624-643.	0.6	1
7	Interactional synchrony: signals, mechanisms and benefits. Social Cognitive and Affective Neuroscience, 2021, 16, 5-18.	1.5	98
8	Neural synchrony in mother–child conversation: Exploring the role of conversation patterns. Social Cognitive and Affective Neuroscience, 2021, 16, 93-102.	1.5	66
9	Preschoolers' Motivation to Overâ€lmitate Humans and Robots. Child Development, 2021, 92, 222-238.	1.7	11
10	An interactionist perspective on the development of coordinated social attention. Advances in Child Development and Behavior, 2021, 61, 1-41.	0.7	3
11	Interpersonal Neural Synchrony During Father–Child Problem Solving: An fNIRS Hyperscanning Study. Child Development, 2021, 92, e565-e580.	1.7	39
12	Multilab Direct Replication of Flavell, Beach, and Chinsky (1966): Spontaneous Verbal Rehearsal in a Memory Task as a Function of Age. Advances in Methods and Practices in Psychological Science, 2021, 4, 251524592110181.	5.4	15
13	A Guide to Parent-Child fNIRS Hyperscanning Data Processing and Analysis. Sensors, 2021, 21, 4075.	2.1	27
14	The value of subsequent memory paradigms in uncovering neural mechanisms of early social learning. NeuroImage, 2021, 234, 117978.	2.1	2
15	Young infants process prediction errors at the theta rhythm. NeuroImage, 2021, 236, 118074.	2.1	14
16	Theta power and theta-gamma coupling during formation of novel representations in the infant brain. Journal of Vision, 2021, 21, 2528.	0.1	0
17	Evidence for a dual-process account of over-imitation: Children imitate anti- and prosocial models equally, but prefer prosocial models once they become aware of multiple solutions to a task. PLoS ONE, 2021, 16, e0256614.	1.1	2
18	Proximity and touch are associated with neural but not physiological synchrony in naturalistic mother-infant interactions. Neurolmage, 2021, 244, 118599.	2.1	43

#	Article	IF	CITATIONS
19	Effects of Reinforcement Learning on Gaze Following of Gaze and Head Direction in Early Infancy: An Interactive Eyeâ€Tracking Study. Child Development, 2021, 92, e364-e382.	1.7	9
20	Being â€~in sync'—is interactional synchrony the key to understanding the social brain?. Social Cognitive and Affective Neuroscience, 2021, 16, 1-4.	1.5	18
21	The role of social signals in segmenting observed actions in eighteenâ€monthâ€old children. Developmental Science, 2021, , .	1.3	0
22	Comparing Online Webcam- and Laboratory-Based Eye-Tracking for the Assessment of Infants' Audio-Visual Synchrony Perception. Frontiers in Psychology, 2021, 12, 733933.	1.1	15
23	Development of Down Syndrome Research Over the Last Decades–What Healthcare and Education Professionals Need to Know. Frontiers in Psychiatry, 2021, 12, 749046.	1.3	7
24	The effects of interaction quality on neural synchrony during mother-child problem solving. Cortex, 2020, 124, 235-249.	1.1	115
25	Motor cortex activity during action observation predicts subsequent action imitation in human infants. Neurolmage, 2020, 218, 116958.	2.1	13
26	Making Sense of the World: Infant Learning From a Predictive Processing Perspective. Perspectives on Psychological Science, 2020, 15, 562-571.	5.2	45
27	Studying parent-child interaction with hyperscanning. Progress in Brain Research, 2020, 254, 1-24.	0.9	31
28	A dual-process perspective on over-imitation. Developmental Review, 2020, 55, 100896.	2.6	16
29	12- to 14-month-olds expect unconstrained agents to act efficiently: Event-related potential (ERP) evidence from the head-touch paradigm Developmental Psychology, 2020, 56, 1252-1267.	1.2	10
30	Visually Entrained Theta Oscillations Increase for Unexpected Events in the Infant Brain. Psychological Science, 2019, 30, 1656-1663.	1.8	33
31	Neurobehavioral Interpersonal Synchrony in Early Development: The Role of Interactional Rhythms. Frontiers in Psychology, 2019, 10, 2078.	1.1	51
32	Minimal group formation influences on over-imitation. Cognitive Development, 2019, 50, 222-236.	0.7	15
33	The Biological Basis of Social Cognition During Development. Neuropsychologia, 2019, 126, 1-2.	0.7	2
34	â€~Over-imitation': A review and appraisal of a decade of research. Developmental Review, 2019, 51, 90-108.	2.6	144
35	Infants' object processing is guided specifically by social cues. Neuropsychologia, 2019, 126, 54-61.	0.7	18
36	Contrasting Social and Cognitive Accounts on Overimitation: The Role of Causal Transparency and Prior Experiences. Child Development, 2018, 89, 1039-1055.	1.7	42

#	Article	IF	CITATIONS
37	Moving developmental social neuroscience toward a second-person approach. PLoS Biology, 2018, 16, e3000055.	2.6	19
38	Reduced Mu Power in Response to Unusual Actions Is Context-Dependent in 1-Year-Olds. Frontiers in Psychology, 2018, 9, 36.	1.1	14
39	Creepy And Crawly? Infants Are Stressed When Seeing A Spider Or A Snake. , 2018, , .		0
40	Do infants associate spiders and snakes with fearful facial expressions?. Evolution and Human Behavior, 2017, 38, 404-413.	1.4	25
41	Schematic eye-gaze cues influence infants' object encoding dependent on their contrast polarity. Scientific Reports, 2017, 7, 7347.	1.6	11
42	Rapid Categorization of Human and Ape Faces in 9-Month-Old Infants Revealed by Fast Periodic Visual Stimulation. Scientific Reports, 2017, 7, 12526.	1.6	28
43	Itsy Bitsy Spider…: Infants React with Increased Arousal to Spiders and Snakes. Frontiers in Psychology, 2017, 8, 1710.	1.1	57
44	Inferring emotion without language: Comparing canines and prelinguistic infants. Animal Sentience, 2017, 2, .	0.3	0
45	The use of repetition suppression paradigms in developmental cognitive neuroscience. Cortex, 2016, 80, 61-75.	1.1	54
46	9â€Monthâ€Old Infants Recognize Individual Unfamiliar Faces in a Rapid Repetition <scp>ERP</scp> Paradigm. Infancy, 2016, 21, 288-311.	0.9	14
47	The development of category specificity in infancy – What can we learn from electrophysiology?. Neuropsychologia, 2016, 83, 114-122.	0.7	16
48	Show Me the World: Object Categorization and Socially Guided Object Learning in Infancy. Child Development Perspectives, 2015, 9, 111-116.	2.1	9
49	Preparedness to Learn About the World: Evidence from Infant Research. , 2015, , 159-173.		4
50	How do neural responses to eyes contribute to face-sensitive ERP components in young infants? A rapid repetition study. Brain and Cognition, 2015, 95, 1-6.	0.8	9
51	Theta- and alpha-band EEG activity in response to eye gaze cues in early infancy. NeuroImage, 2015, 118, 576-583.	2.1	25
52	The development of visual object categorization as revealed by fast periodic visual stimulation. Journal of Vision, 2015, 15, 1163.	0.1	1
53	Emotion Processing in Infancy. Contributions To Human Development, 2014, , 1-12.	0.7	13
54	The influence of familiarity on explicit eye gaze judgement in preschoolers. European Journal of Developmental Psychology, 2014, 11, 344-355.	1.0	1

#	Article	IF	CITATIONS
55	How do 9â€monthâ€old infants categorize human and ape faces? A rapid repetition <scp>ERP</scp> study. Psychophysiology, 2014, 51, 866-878.	1.2	35
56	Disentangling the Effects of an Adult Model's Eye Gaze and Head Orientation on Young Infants' Processing of a Previously Attended Object. Infancy, 2014, 19, 53-64.	0.9	20
57	Eye contact during live social interaction modulates infants' oscillatory brain activity. Social Neuroscience, 2014, 9, 300-308.	0.7	49
58	The role of social interaction and pedagogical cues for eliciting and reducing overimitation in preschoolers. Journal of Experimental Child Psychology, 2014, 122, 122-133.	0.7	46
59	Neural correlates of human–animal distinction: An ERP-study on early categorical differentiation with 4- and 7-month-old infants and adults. Neuropsychologia, 2014, 60, 60-76.	0.7	57
60	Head and eye movements affect object processing in 4â€monthâ€old infants more than an artificial orientation cue. British Journal of Developmental Psychology, 2013, 31, 212-230.	0.9	32
61	Three-Month-Olds' Brain Responses to Upright and Inverted Faces and Cars. Developmental Neuropsychology, 2013, 38, 272-280.	1.0	35
62	Further Evidence for Continuity in Infants' Joint Attention Development. Human Development, 2013, 56, 249-253.	1.2	3
63	Recording Infant ERP Data for Cognitive Research. Developmental Neuropsychology, 2012, 37, 187-209.	1.0	93
64	Effects of eye gaze cues provided by the caregiver compared to a stranger on infants' object processing. Developmental Cognitive Neuroscience, 2012, 2, 81-89.	1.9	40
65	The early development of face processing — What makes faces special?. Neuroscience Bulletin, 2012, 28, 765-788.	1.5	75
66	Do surprised faces affect infants' attention toward novel objects?. NeuroReport, 2011, 22, 906-910.	0.6	4
67	Eye contact and emotional face processing in 6-month-old infants: Advanced statistical methods applied to event-related potentials. Brain and Development, 2010, 32, 305-317.	0.6	19
68	Do animals and furniture items elicit different brain responses in human infants?. Brain and Development, 2010, 32, 863-871.	0.6	36
69	The development of emotional face and eye gaze processing. Developmental Science, 2010, 13, 813-825.	1.3	70
70	Setting the Frame: The Human Brain Activates a Basic Low-Frequency Network for Language Processing. Cerebral Cortex, 2010, 20, 1286-1292.	1.6	70
71	Children's processing of emotions expressed by peers and adults: An fMRI study. Social Neuroscience, 2010, 5, 543-559.	0.7	34
72	Infants' neural processing of positive emotion and eye gaze. Social Neuroscience, 2010, 5, 30-39.	0.7	21

#	Article	IF	CITATIONS
73	Looking at Eye Gaze Processing and Its Neural Correlates in Infancy—Implications for Social Development and Autism Spectrum Disorder. Child Development, 2009, 80, 968-985.	1.7	58
74	The neural correlates of infant and adult goal prediction: Evidence for semantic processing systems Developmental Psychology, 2009, 45, 620-629.	1.2	85
75	What are you looking at? Infants' neural processing of an adult's objectâ€directed eye gaze. Developmental Science, 2008, 11, 10-16.	1.3	94
76	Neural Processing of Eye Gaze and Threatâ€Related Emotional Facial Expressions in Infancy. Child Development, 2008, 79, 1752-1760.	1.7	124
77	Human infants dissociate structural and dynamic information in biological motion: evidence from neural systems. Social Cognitive and Affective Neuroscience, 2008, 3, 161-167.	1.5	34
78	Infants' attention is biased by emotional expressions and eye gaze direction. NeuroReport, 2008, 19, 579-582.	0.6	36
79	Young Infants' Neural Processing of Objects Is Affected by Eye Gaze Direction and Emotional Expression. PLoS ONE, 2008, 3, e2389.	1.1	75
80	Sensitivity to triadic attention between 6 weeks and 3 months of age. , 2007, 30, 529-534.		24
81	The perception of biological motion by infants: An event-related potential study. Neuroscience Letters, 2006, 395, 211-214.	1.0	126
82	Neural mechanisms of joint attention in infancy. European Journal of Neuroscience, 2006, 23, 2819-2823.	1.2	131