

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7406394/publications.pdf Version: 2024-02-01

VELIA

#	Article	IF	CITATIONS
1	Ultrathin Iron obalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction. Advanced Materials, 2017, 29, 1606793.	11.1	1,144
2	Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions. Advanced Materials, 2016, 28, 9532-9538.	11.1	961
3	A Heterostructure Coupling of Exfoliated Ni–Fe Hydroxide Nanosheet and Defective Graphene as a Bifunctional Electrocatalyst for Overall Water Splitting. Advanced Materials, 2017, 29, 1700017.	11.1	845
4	Graphene Defects Trap Atomic Ni Species for Hydrogen and Oxygen Evolution Reactions. CheM, 2018, 4, 285-297.	5.8	624
5	Coordination of Atomic Co–Pt Coupling Species at Carbon Defects as Active Sites for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2018, 140, 10757-10763.	6.6	464
6	Defects on carbons for electrocatalytic oxygen reduction. Chemical Society Reviews, 2018, 47, 7628-7658.	18.7	432
7	Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nature Catalysis, 2019, 2, 688-695.	16.1	423
8	A Defect-Driven Metal-free Electrocatalyst for Oxygen Reduction in Acidic Electrolyte. CheM, 2018, 4, 2345-2356.	5.8	292
9	The Role of Defect Sites in Nanomaterials for Electrocatalytic Energy Conversion. CheM, 2019, 5, 1371-1397.	5.8	273
10	Three-dimensional NiCo ₂ O ₄ @NiWO ₄ core–shell nanowire arrays for high performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 1028-1034.	5.2	264
11	Edgeâ€Rich Feâ^'N ₄ Active Sites in Defective Carbon for Oxygen Reduction Catalysis. Advanced Materials, 2020, 32, e2000966.	11.1	215
12	A Surfactantâ€Free and Scalable General Strategy for Synthesizing Ultrathin Twoâ€Dimensional Metal–Organic Framework Nanosheets for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 13565-13572.	7.2	205
13	Sulfurâ€Modified Oxygen Vacancies in Iron–Cobalt Oxide Nanosheets: Enabling Extremely High Activity of the Oxygen Evolution Reaction to Achieve the Industrial Water Splitting Benchmark. Angewandte Chemie - International Edition, 2020, 59, 14664-14670.	7.2	178
14	Defectiveâ€Activatedâ€Carbonâ€Supported Mn–Co Nanoparticles as a Highly Efficient Electrocatalyst for Oxygen Reduction. Advanced Materials, 2016, 28, 8771-8778.	11.1	175
15	Defectâ€Induced Pt–Co–Se Coordinated Sites with Highly Asymmetrical Electronic Distribution for Boosting Oxygenâ€Involving Electrocatalysis. Advanced Materials, 2019, 31, e1805581.	11.1	168
16	Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. Nano Research, 2018, 11, 3509-3518.	5.8	167
17	Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage. Renewable and Sustainable Energy Reviews, 2015, 44, 289-303.	8.2	164
18	Seaweed biomass derived (Ni,Co)/CNT nanoaerogels: efficient bifunctional electrocatalysts for oxygen evolution and reduction reactions. Journal of Materials Chemistry A, 2016, 4, 6376-6384.	5.2	164

Yi Jia

#	Article	IF	CITATIONS
19	Understanding the Activity of Coâ€N _{4â^'<i>x</i>} C _{<i>x</i>} in Atomic Metal Catalysts for Oxygen Reduction Catalysis. Angewandte Chemie - International Edition, 2020, 59, 6122-6127.	7.2	156
20	Activated carbon becomes active for oxygen reduction and hydrogen evolution reactions. Chemical Communications, 2016, 52, 8156-8159.	2.2	145
21	Recent advances in liquid-phase chemical hydrogen storage. Energy Storage Materials, 2020, 26, 290-312.	9.5	142
22	Single Carbon Vacancy Traps Atomic Platinum for Hydrogen Evolution Catalysis. Journal of the American Chemical Society, 2022, 144, 2171-2178.	6.6	140
23	Plasmaâ€Triggered Synergy of Exfoliation, Phase Transformation, and Surface Engineering in Cobalt Diselenide for Enhanced Water Oxidation. Angewandte Chemie - International Edition, 2018, 57, 16421-16425.	7.2	120
24	A Directional Synthesis for Topological Defect in Carbon. CheM, 2020, 6, 2009-2023.	5.8	120
25	Defect electrocatalytic mechanism: concept, topological structure and perspective. Materials Chemistry Frontiers, 2018, 2, 1250-1268.	3.2	119
26	Facile Synthesis of CoWO ₄ Nanosheet Arrays Grown on Nickel Foam Substrates for Asymmetric Supercapacitors. ChemElectroChem, 2016, 3, 1490-1496.	1.7	98
27	Defective Structures in Metal Compounds for Energyâ€Related Electrocatalysis. Small Structures, 2021, 2, 2000067.	6.9	97
28	Hydrogen Incorporation and Storage in Well-Defined Nanocrystals of Anatase Titanium Dioxide. Journal of Physical Chemistry C, 2011, 115, 25590-25594.	1.5	93
29	Sulfurâ€Modified Oxygen Vacancies in Iron–Cobalt Oxide Nanosheets: Enabling Extremely High Activity of the Oxygen Evolution Reaction to Achieve the Industrial Water Splitting Benchmark. Angewandte Chemie, 2020, 132, 14772-14778.	1.6	89
30	Enhanced hydrogen desorption from Mg(BH4)2 by combining nanoconfinement and a Ni catalyst. Journal of Materials Chemistry A, 2013, 1, 3471.	5.2	87
31	Charge Polarization from Atomic Metals on Adjacent Graphitic Layers for Enhancing the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 9404-9408.	7.2	87
32	Destabilization of Mg–H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH2. Physical Chemistry Chemical Physics, 2013, 15, 5814.	1.3	80
33	Gradient oncentration Design of Stable Core–Shell Nanostructure for Acidic Oxygen Reduction Electrocatalysis. Advanced Materials, 2020, 32, e2003493.	11.1	79
34	In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core–shell structured materials for supercapacitors. Journal of Power Sources, 2012, 216, 508-514.	4.0	75
35	Architecture-controlled synthesis of M _x O _y (M = Ni, Fe, Cu) microfibres from seaweed biomass for high-performance lithium ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 22708-22715.	5.2	75
36	Layer-by-layer assembly and electrochemical properties of sandwiched film of manganese oxide nanosheet and carbon nanotube. Carbon, 2009, 47, 1534-1542.	5.4	73

Υι Ιια

#	Article	lF	CITATIONS
37	System analysis of pulping process coupled with supercritical water gasification of black liquor for combined hydrogen, heat and power production. Energy, 2017, 132, 238-247.	4.5	69
38	Activity Origins in Nanocarbons for the Electrocatalytic Hydrogen Evolution Reaction. Small, 2018, 14, e1800235.	5.2	68
39	Ultra-dense carbon defects as highly active sites for oxygen reduction catalysis. CheM, 2022, 8, 2715-2733.	5.8	66
40	Enhanced photodynamic therapy of mixed phase TiO2(B)/anatase nanofibers for killing of HeLa cells. Nano Research, 2014, 7, 1659-1669.	5.8	65
41	Biomimetic CNT@TiO2 composite with enhanced photocatalytic properties. Chemical Engineering Journal, 2015, 281, 60-68.	6.6	65
42	Metallic Ni nanocatalyst in situ formed from a metal–organic-framework by mechanochemical reaction for hydrogen storage in magnesium. Journal of Materials Chemistry A, 2015, 3, 8294-8299.	5.2	65
43	Carbon scaffold modified by metal (Ni) or non-metal (N) to enhance hydrogen storage of MgH2 through nanoconfinement. International Journal of Hydrogen Energy, 2017, 42, 22933-22941.	3.8	64
44	Supercritical Water Gasification of Coal with Waste Black Liquor as Inexpensive Additives. Energy & Fuels, 2015, 29, 384-391.	2.5	62
45	Hydrogenation/dehydrogenation in MgH2-activated carbon composites prepared by ball milling. International Journal of Hydrogen Energy, 2012, 37, 7579-7585.	3.8	60
46	Catalytic De/Hydrogenation in Mg by Coâ€Doped Ni and VO _{<i>x</i>} on Active Carbon: Extremely Fast Kinetics at Low Temperatures and High Hydrogen Capacity. Advanced Energy Materials, 2011, 1, 387-393.	10.2	58
47	Fluorineâ€Doped Porous Singleâ€Crystal Rutile TiO ₂ Nanorods for Enhancing Photoelectrochemical Water Splitting. Chemistry - A European Journal, 2014, 20, 11439-11444.	1.7	58
48	Scalable and controllable synthesis of atomic metal electrocatalysts assisted by an egg-box in alginate. Journal of Materials Chemistry A, 2018, 6, 18417-18425.	5.2	58
49	Manipulating solar absorption and electron transport properties of rutile TiO2 photocatalysts via highly n-type F-doping. Journal of Materials Chemistry A, 2014, 2, 3513.	5.2	52
50	Controllable synthesis of Fe–N ₄ species for acidic oxygen reduction. , 2020, 2, 452-460.		50
51	Design of plasmonic nanomaterials for diagnostic spectrometry. Nanoscale Advances, 2019, 1, 459-469.	2.2	48
52	Defective Carbons Derived from Macadamia Nut Shell Biomass for Efficient Oxygen Reduction and Supercapacitors. ChemElectroChem, 2018, 5, 1874-1879.	1.7	47
53	Understanding the Activity of Coâ€N _{4â^'<i>x</i>} C _{<i>x</i>} in Atomic Metal Catalysts for Oxygen Reduction Catalysis. Angewandte Chemie, 2020, 132, 6178-6183.	1.6	47
54	Atomic Cobalt on Defective Bimodal Mesoporous Carbon toward Efficient Oxygen Reduction for Zinc–Air Batteries. Small Methods, 2019, 3, 1800450.	4.6	45

Yi Jia

#	Article	IF	CITATIONS
55	Confined LiBH4: Enabling fast hydrogen release at â^¼100°C. International Journal of Hydrogen Energy, 2012, 37, 18920-18926.	3.8	44
56	NaBH 4 regeneration from NaBO 2 by high-energy ball milling and its plausible mechanism. International Journal of Hydrogen Energy, 2017, 42, 13127-13135.	3.8	44
57	Hydrothermal Synthesis of 3D Porous Structure Bi ₂ WO ₆ /Reduced Graphene Oxide Hydrogels for Enhancing Supercapacitor Performance. ChemElectroChem, 2017, 4, 577-584.	1.7	40
58	Grafting Cobalt Diselenide on Defective Graphene for Enhanced Oxygen Evolution Reaction. IScience, 2018, 7, 145-153.	1.9	39
59	BrÃ,nsted base site engineering of graphitic carbon nitride for enhanced photocatalytic activity. Journal of Materials Chemistry A, 2017, 5, 19227-19236.	5.2	36
60	Clarifying the Origin of Oxygen Reduction Activity in Heteroatom-Modified Defective Carbon. Cell Reports Physical Science, 2020, 1, 100083.	2.8	35
61	Atom-Coordinated Structure Triggers Selective H2O2 Production. CheM, 2020, 6, 548-550.	5.8	34
62	Defective carbon-based materials: controllable synthesis and electrochemical applications. EnergyChem, 2021, 3, 100059.	10.1	34
63	Probing the Active Sites of Carbonâ€Encapsulated Cobalt Nanoparticles for Oxygen Reduction. Small Methods, 2019, 3, 1800439.	4.6	33
64	Co3O4nanoparticle embedded carbonaceous fibres: a nanoconfinement effect on enhanced lithium-ion storage. Chemical Communications, 2015, 51, 16267-16270.	2.2	32
65	Dehydrogenation of Ammonia Borane Confined by Low-Density Porous Aromatic Framework. Journal of Physical Chemistry C, 2012, 116, 25694-25700.	1.5	30
66	Potassium Niobate Nanolamina: A Promising Adsorbent for Entrapment of Radioactive Cations from Water. Scientific Reports, 2014, 4, 7313.	1.6	24
67	Defective graphene anchored iron–cobalt nanoparticles for efficient electrocatalytic oxygen reduction. Chemical Communications, 2017, 53, 12140-12143.	2.2	24
68	Hierarchically structured WO ₃ –CNT@TiO ₂ NS composites with enhanced photocatalytic activity. Journal of Materials Chemistry A, 2015, 3, 5467-5473.	5.2	23
69	Catalytically Enhanced Hydrogen Sorption in Mg-MgH2 by Coupling Vanadium-Based Catalyst and Carbon Nanotubes. Materials, 2015, 8, 3491-3507.	1.3	22
70	Catalytically enhanced dehydrogenation of MgH2 by activated carbon supported Pd–VOx (x=2.38) nanocatalyst. International Journal of Hydrogen Energy, 2012, 37, 13393-13399.	3.8	20
71	One-step In-situ Synthesis of Vacancy-rich CoFe2O4@Defective Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries. Chemical Research in Chinese Universities, 2020, 36, 479-487.	1.3	20
72	H–TiO2/C/MnO2 nanocomposite materials for high-performance supercapacitors. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	19

Yi Jia

#	Article	IF	CITATIONS
73	A magnetic field strategy to porous Pt-Ni nanoparticles with predominant (111) facets for enhanced electrocatalytic oxygen reduction. Journal of Energy Chemistry, 2021, 53, 192-196.	7.1	19
74	Metallic Ni nanocatalyst in situ formed from LaNi5H5 toward efficient CO2 methanation. International Journal of Hydrogen Energy, 2019, 44, 29068-29074.	3.8	16
75	Platinum stabilized by defective activated carbon with excellent oxygen reduction performance in alkaline media. Chinese Journal of Catalysis, 2017, 38, 1011-1020.	6.9	13
76	Charge Polarization from Atomic Metals on Adjacent Graphitic Layers for Enhancing the Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 9504-9508.	1.6	10
77	Dehydrogenation and reaction pathway of Perovskite-Type NH4Ca(BH4)3. Progress in Natural Science: Materials International, 2018, 28, 194-199.	1.8	7
78	Heteroatom-Doped Graphdiyne Enables Ferromagnetism of Carbon. ACS Central Science, 2020, 6, 830-832.	5.3	6
79	Effect of titanium based complex catalyst and carbon nanotubes on hydrogen storage performance of magnesium. Science China Chemistry, 2013, 56, 451-458.	4.2	5
80	Defect Chemistry Special Collection. Chemistry - an Asian Journal, 2021, 16, 112-113.	1.7	0