
Kim M Keeling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7406353/publications.pdf Version: 2024-02-01

3.2

78

7

#	Article	IF	CITATIONS
1	Targeted Therapeutics for Rare Disorders. , 2024, , 249-271.		1
2	A small molecule that induces translational readthrough of CFTR nonsense mutations by eRF1 depletion. Nature Communications, 2021, 12, 4358.	5.8	59
3	A regulated NMD mouse model supports NMD inhibition as a viable therapeutic option to treat genetic diseases. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	4
4	Mutation-Directed Therapeutics for Neurofibromatosis Type I. Molecular Therapy - Nucleic Acids, 2020, 20, 739-753.	2.3	16
5	Pharmacological approaches for targeting cystic fibrosis nonsense mutations. European Journal of Medicinal Chemistry, 2020, 200, 112436.	2.6	25
6	Finding sense in the context. ELife, 2020, 9, .	2.8	1
7	Identification of the amino acids inserted during suppression of CFTR nonsense mutations and determination of their functional consequences. Human Molecular Genetics, 2017, 26, 3116-3129.	1.4	69
8	Nonsense Suppression as an Approach to Treat Lysosomal Storage Diseases. Diseases (Basel,) Tj ETQq0 0 0 rgBT	/Overlock	10,Tf 50 462
9	Discovery of Clinically Approved Agents That Promote Suppression of Cystic Fibrosis Transmembrane Conductance Regulator Nonsense Mutations. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1092-1103.	2.5	77
10	Ataluren stimulates ribosomal selection of near-cognate tRNAs to promote nonsense suppression. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12508-12513.	3.3	168
11	Therapeutics Based on Stop Codon Readthrough. Annual Review of Genomics and Human Genetics, 2014, 15, 371-394.	2.5	247
12	Long-term nonsense suppression therapy moderates MPS I-H disease progression. Molecular Genetics and Metabolism, 2014, 111, 374-381.	0.5	44
13	Attenuation of Nonsense-Mediated mRNA Decay Enhances In Vivo Nonsense Suppression. PLoS ONE, 2013, 8, e60478.	1.1	89
14	The designer aminoglycoside NB84 significantly reduces glycosaminoglycan accumulation associated with MPS I-H in the Idua-W392X mouse. Molecular Genetics and Metabolism, 2012, 105, 116-125.	0.5	67
15	Suppression of premature termination codons as a therapeutic approach. Critical Reviews in Biochemistry and Molecular Biology, 2012, 47, 444-463.	2.3	89

18	Recoding Therapies for Genetic Diseases. Nucleic A	cids and Molecular Biology, 2010, , 123-146.	0.2
----	--	--	-----

Suppression of nonsense mutations as a therapeutic approach to treat genetic diseases. Wiley Interdisciplinary Reviews RNA, 2011, 2, 837-852.

Characterization of an MPS I-H knock-in mouse that carries a nonsense mutation analogous to the human IDUA-W402X mutation. Molecular Genetics and Metabolism, 2010, 99, 62-71.

16

Kim M Keeling

#	Article	IF	CITATIONS
19	Poly-l-aspartic Acid Enhances and Prolongs Gentamicin-mediated Suppression of the CFTR-G542X Mutation in a Cystic Fibrosis Mouse Model. Journal of Biological Chemistry, 2009, 284, 6885-6892.	1.6	38
20	Distinct eRF3 Requirements Suggest Alternate eRF1 Conformations Mediate Peptide Release during Eukaryotic Translation Termination. Molecular Cell, 2008, 30, 599-609.	4.5	56
21	Aminoglycosides as Potential Pharmacogenetic Agents in the Treatment of Hailey–Hailey Disease. Journal of Investigative Dermatology, 2006, 126, 229-231.	0.3	65
22	Clinical doses of amikacin provide more effective suppression of the human CFTR-G542X stop mutation than gentamicin in a transgenic CF mouse model. Journal of Molecular Medicine, 2006, 84, 573-582.	1.7	68
23	Eukaryotic Release Factor 1 Phosphorylation by CK2 Protein Kinase Is Dynamic but Has Little Effect on the Efficiency of Translation Termination in Saccharomyces cerevisiae. Eukaryotic Cell, 2006, 5, 1378-1387.	3.4	19
24	Tpa1p Is Part of an mRNP Complex That Influences Translation Termination, mRNA Deadenylation, and mRNA Turnover in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2006, 26, 5237-5248.	1.1	53
25	Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae. Rna, 2004, 10, 691-703.	1.6	153
26	Clinically relevant aminoglycosides can suppress disease-associated premature stop mutations in the IDUA and P53 cDNAs in a mammalian translation system. Journal of Molecular Medicine, 2002, 80, 367-376.	1.7	124
27	Aminoglycoside suppression of a premature stop mutation in a Cftr–/– mouse carrying a human CFTR-G542X transgene. Journal of Molecular Medicine, 2002, 80, 595-604.	1.7	160
28	Gentamicin-mediated suppression of Hurler syndrome stop mutations restores a low level of alpha-L-iduronidase activity and reduces lysosomal glycosaminoglycan accumulation. Human Molecular Genetics, 2001, 10, 291-299.	1.4	145
29	Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. Rna, 2000, 6, 1044-1055.	1.6	335
30	Diffusion-controlled crystallization apparatus for microgravity (DCAM): flight and ground-based applications. Journal of Crystal Growth, 1999, 196, 602-609.	0.7	33
31	PCAM: a multi-user facility-based protein crystallization apparatus for microgravity. Journal of Crystal Growth, 1999, 196, 610-622.	0.7	28
32	Interaction between a Fab fragment against gp41 of human immunodeficiency virus 1 and its peptide epitope: characterization using a peptide epitope library and molecular modeling. Protein Engineering, Design and Selection, 1995, 8, 471-479.	1.0	27
33	Threeâ€Dimensional structure of <i>schistosoma japonicum</i> glutathione <i>s</i> â€transferase fused with a sixâ€amino acid conserved neutralizing epitope of gp41 from hiv. Protein Science, 1994, 3, 2233-2244.	3.1	169
34	Preliminary Crystallographic Studies of Four Crystal forms of Serum Albumin. FEBS Journal, 1994, 226, 1049-1052.	0.2	222