Andrew D Cherniack

List of Publications by Citations

Source: https://exaly.com/author-pdf/7405608/andrew-d-cherniack-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

71,654 80 149 175 h-index g-index citations papers 93,486 175 22.9 9.25 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
149	Comprehensive molecular portraits of human breast tumours. <i>Nature</i> , 2012 , 490, 61-70	50.4	8025
148	Comprehensive molecular characterization of human colon and rectal cancer. <i>Nature</i> , 2012 , 487, 330-7	50.4	5640
147	Comprehensive molecular characterization of gastric adenocarcinoma. <i>Nature</i> , 2014 , 513, 202-9	50.4	3659
146	Comprehensive molecular profiling of lung adenocarcinoma. <i>Nature</i> , 2014 , 511, 543-50	50.4	3310
145	Comprehensive genomic characterization of squamous cell lung cancers. <i>Nature</i> , 2012 , 489, 519-25	50.4	2820
144	Integrated genomic characterization of endometrial carcinoma. <i>Nature</i> , 2013 , 497, 67-73	50.4	2800
143	Comprehensive genomic characterization of head and neck squamous cell carcinomas. <i>Nature</i> , 2015 , 517, 576-82	50.4	2332
142	Comprehensive molecular characterization of clear cell renal cell carcinoma. <i>Nature</i> , 2013 , 499, 43-9	50.4	2184
141	Comprehensive molecular characterization of urothelial bladder carcinoma. <i>Nature</i> , 2014 , 507, 315-22	50.4	1963
140	Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. <i>New England Journal of Medicine</i> , 2015 , 372, 2481-98	59.2	1828
139	Genomic Classification of Cutaneous Melanoma. <i>Cell</i> , 2015 , 161, 1681-96	56.2	1807
138	The Immune Landscape of Cancer. <i>Immunity</i> , 2018 , 48, 812-830.e14	32.3	1754
137	The Molecular Taxonomy of Primary Prostate Cancer. <i>Cell</i> , 2015 , 163, 1011-25	56.2	1713
136	Integrated genomic characterization of papillary thyroid carcinoma. <i>Cell</i> , 2014 , 159, 676-90	56.2	1660
135	Pan-cancer patterns of somatic copy number alteration. <i>Nature Genetics</i> , 2013 , 45, 1134-40	36.3	1198
134	Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. <i>Cell</i> , 2016 , 164, 550-63	56.2	1140
133	Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. <i>Cell</i> , 2017 , 169, 1327-1341.e23	56.2	1125

132	Oncogenic Signaling Pathways in The Cancer Genome Atlas. <i>Cell</i> , 2018 , 173, 321-337.e10	56.2	1124
131	An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. <i>Cell</i> , 2018 , 173, 400-416.e11	56.2	1072
130	Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell, 2015, 163, 506-19	56.2	1055
129	Next-generation characterization of the Cancer Cell Line Encyclopedia. <i>Nature</i> , 2019 , 569, 503-508	50.4	962
128	Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. <i>Cell</i> , 2017 , 171, 540-556	5. e ;2652	961
127	Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. <i>Cell</i> , 2014 , 158, 929-944	56.2	935
126	Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2017, 32, 185-	2 03. g 1	3 896
125	Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. <i>Cell</i> , 2018 , 173, 291-304.e6	56.2	888
124	Comprehensive Characterization of Cancer Driver Genes and Mutations. <i>Cell</i> , 2018 , 173, 371-385.e18	56.2	854
123	Pan-cancer analysis of whole genomes. <i>Nature</i> , 2020 , 578, 82-93	50.4	840
122	Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. <i>Cancer Discovery</i> , 2013 , 3, 1355-63	24.4	831
121	Integrated genomic and molecular characterization of cervical cancer. <i>Nature</i> , 2017 , 543, 378-384	50.4	755
120	Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. <i>New England Journal of Medicine</i> , 2016 , 374, 135-45	59.2	753
119	A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. <i>Science</i> , 2013 , 340, 1100-6	33.3	637
118	Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. <i>Nature Genetics</i> , 2016 , 48, 607-16	36.3	613
117	Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. <i>Cell</i> , 2018 , 173, 338-354.e15	56.2	560
116	Landscape of genomic alterations in cervical carcinomas. <i>Nature</i> , 2014 , 506, 371-5	50.4	541
115	The somatic genomic landscape of chromophobe renal cell carcinoma. <i>Cancer Cell</i> , 2014 , 26, 319-330	24.3	521

114	Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. <i>Cell</i> , 2017 , 171, 950-965.e28	56.2	451
113	Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. <i>Cell Reports</i> , 2018 , 23, 239-254.e6	10.6	405
112	The chromatin accessibility landscape of primary human cancers. <i>Science</i> , 2018 , 362,	33.3	392
111	Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. <i>Cancer Cell</i> , 2017 , 32, 204-220.e15	24.3	391
110	Genomic and Functional Approaches to Understanding Cancer Aneuploidy. Cancer Cell, 2018, 33, 676-68	8 9. ę3	377
109	Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. <i>Cell Reports</i> , 2018 , 23, 181-193.e7	10.6	366
108	Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. <i>Cancer Cell</i> , 2017 , 31, 181-193	24.3	350
107	Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting. <i>Cancer Discovery</i> , 2016 , 6, 914-29	24.4	343
106	Pathogenic Germline Variants in 10,389 Adult Cancers. Cell, 2018, 173, 355-370.e14	56.2	342
105	Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. <i>Cancer Cell</i> , 2018 , 34, 211-224.e6	24.3	327
104	Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell, 2016, 29, 723-	73 46.3	324
103	Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. <i>Cell Systems</i> , 2018 , 6, 271-281.e7	10.6	320
102	The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. <i>Cell Reports</i> , 2018 , 23, 313-326.e5	10.6	295
101	Binding of the Ras activator son of sevenless to insulin receptor substrate-1 signaling complexes. <i>Science</i> , 1993 , 260, 1950-2	33.3	283
100	A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. <i>Cancer Cell</i> , 2018 , 33, 690-705.e9	24.3	277
99	lncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic lncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer. <i>Cancer Cell</i> , 2018 , 33, 706-720.e9	24.3	275
98	Integrative Molecular Characterization of Malignant Pleural Mesothelioma. <i>Cancer Discovery</i> , 2018 , 8, 1548-1565	24.4	258
97	Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles. <i>Cell Reports</i> , 2017 , 18, 2780-2794	10.6	247

(2018-2018)

96	Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. <i>Cell Reports</i> , 2018 , 23, 227-238.e3	10.6	235
95	Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. <i>Cancer Cell</i> , 2018 , 33, 721-735.e8 ₂	24.3	228
94	Integrated Molecular Characterization of Uterine Carcinosarcoma. <i>Cancer Cell</i> , 2017 , 31, 411-423	24.3	210
93	Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nature Genetics, 2016 , 48, 176-82	36.3	210
92	Integrated Molecular Characterization of Testicular Germ Cell Tumors. <i>Cell Reports</i> , 2018 , 23, 3392-34061	10.6	200
91	Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types. <i>Cell Reports</i> , 2018 , 23, 282-296.e4	10.6	188
90	Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes. <i>Journal of Clinical Investigation</i> , 2006 , 116, 125-36	15.9	176
89	Mechanisms and therapeutic implications of hypermutation in gliomas. <i>Nature</i> , 2020 , 580, 517-523	50.4	172
88	Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. <i>Cell</i> , 2018 , 173, 305-320.e10	56.2	166
87	Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. <i>Cell Systems</i> , 2018 , 6, 282-300.e2	10.6	159
86	Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. <i>Nature Medicine</i> , 2020 , 26, 909-918	50.5	155
85	The Integrated Genomic Landscape of Thymic Epithelial Tumors. <i>Cancer Cell</i> , 2018 , 33, 244-258.e10 2	24.3	150
84	Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context. <i>Cell Reports</i> , 2018 , 23, 297-312.e12	10.6	147
83	Comparison of Breast Cancer Molecular Features and Survival by African and European Ancestry in The Cancer Genome Atlas. <i>JAMA Oncology</i> , 2017 , 3, 1654-1662	13.4	146
82	Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. <i>Cell Reports</i> , 2018 , 23, 194-212.e6	10.6	146
81	The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis. <i>Nature Genetics</i> , 2016 , 48, 848-55	36.3	135
80	A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples. <i>Cell</i> , 2018 , 173, 386-399.e ₅	16 2	133
79	Systematic Analysis of Splice-Site-Creating Mutations in Cancer. <i>Cell Reports</i> , 2018 , 23, 270-281.e3	10.6	121

78	Loss of the retinoblastoma binding protein 2 (RBP2) histone demethylase suppresses tumorigenesis in mice lacking Rb1 or Men1. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 13379-86	11.5	121
77	Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers. <i>Cell Reports</i> , 2018 , 23, 255-269.e4	10.6	112
76	The genomic landscape of tuberous sclerosis complex. <i>Nature Communications</i> , 2017 , 8, 15816	17.4	104
75	A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF- L Superfamily. <i>Cell Systems</i> , 2018 , 7, 422-437.e7	10.6	85
74	Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells. <i>Nature Communications</i> , 2018 , 9, 5450	17.4	83
73	Disassembly of Son-of-sevenless Proteins from Grb2 during p21 Desensitization by Insulin. <i>Journal of Biological Chemistry</i> , 1995 , 270, 1485-1488	5.4	75
72	Function of Neurospora mitochondrial tyrosyl-tRNA synthetase in RNA splicing requires an idiosyncratic domain not found in other synthetases. <i>Cell</i> , 1990 , 62, 745-55	56.2	73
71	Somatic Superenhancer Duplications and Hotspot Mutations Lead to Oncogenic Activation of the KLF5 Transcription Factor. <i>Cancer Discovery</i> , 2018 , 8, 108-125	24.4	67
70	Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. <i>Cell Reports</i> , 2018 , 23, 172-180.e3	10.6	66
69	Before and After: Comparison of Legacy and Harmonized TCGA Genomic Data Commons Data. <i>Cell Systems</i> , 2019 , 9, 24-34.e10	10.6	64
68	Sporadic Early-Onset Diffuse Gastric Cancers Have High Frequency of Somatic CDH1 Alterations, but Low Frequency of Somatic RHOA Mutations Compared With Late-Onset Cancers. Gastroenterology, 2017, 153, 536-549.e26	13.3	63
67	Glioblastoma-derived epidermal growth factor receptor carboxyl-terminal deletion mutants are transforming and are sensitive to EGFR-directed therapies. <i>Cancer Research</i> , 2011 , 71, 7587-96	10.1	62
66	Molecular Mechanisms of Acquired Resistance to MET Tyrosine Kinase Inhibitors in Patients with MET Exon 14-Mutant NSCLC. <i>Clinical Cancer Research</i> , 2020 , 26, 2615-2625	12.9	60
65	G(alpha)11 signaling through ARF6 regulates F-actin mobilization and GLUT4 glucose transporter translocation to the plasma membrane. <i>Molecular and Cellular Biology</i> , 2001 , 21, 5262-75	4.8	57
64	Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types. <i>Cell Reports</i> , 2018 , 23, 21	3-2 26. @3	56
63	Comprehensive Analysis of Genetic Ancestry and Its Molecular Correlates in Cancer. <i>Cancer Cell</i> , 2020 , 37, 639-654.e6	24.3	56
62	Genomic and immune profiling of pre-invasive lung adenocarcinoma. <i>Nature Communications</i> , 2019 , 10, 5472	17.4	56
61	Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nature Communications, 2018, 9, 2024	17.4	54

60	Rapid Intraoperative Molecular Characterization of Glioma. <i>JAMA Oncology</i> , 2015 , 1, 662-7	13.4	53	
59	BRCA1 ensures genome integrity by eliminating estrogen-induced pathological topoisomerase II-DNA complexes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E10642-E10651	11.5	47	
58	Molecular profiling of endometrial carcinoma precursor, primary and metastatic lesions suggests different targets for treatment in obese compared to non-obese patients. <i>Oncotarget</i> , 2015 , 6, 1327-39	3.3	42	
57	Integrated Genomic and Functional microRNA Analysis Identifies miR-30-5p as a Tumor Suppressor and Potential Therapeutic Nanomedicine in Head and Neck Cancer. <i>Clinical Cancer Research</i> , 2019 , 25, 2860-2873	12.9	41	
56	Impact of DNA Damage Response and Repair (DDR) Gene Mutations on Efficacy of PD-(L)1 Immune Checkpoint Inhibition in Non-Small Cell Lung Cancer. <i>Clinical Cancer Research</i> , 2020 , 26, 4135-4142	12.9	41	
55	Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns. <i>Journal of Molecular Biology</i> , 2001 , 307, 75-92	6.5	38	
54	Genetic modifiers of EGFR dependence in non-small cell lung cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 18661-6	11.5	37	
53	Genome-scale analysis identifies paralog lethality as a vulnerability of chromosome 1p loss in cancer. <i>Nature Genetics</i> , 2018 , 50, 937-943	36.3	35	
52	Clinicopathological and genomic correlates of programmed cell death ligand (PD-L1) expression in nonsquamous non-small-cell lung cancer. <i>Annals of Oncology</i> , 2020 , 31, 807-814	10.3	34	
51	Genomic Activation of Reveals a Candidate Therapeutic Axis in Bladder Cancer. <i>Cancer Research</i> , 2017 , 77, 6987-6998	10.1	34	
50	Divergent mechanisms for homologous desensitization of p21ras by insulin and growth factors. Journal of Biological Chemistry, 1995 , 270, 23421-8	5.4	33	
49	Abstract 3287: An integrated TCGA pan-cancer clinical data resource to drive high quality survival outcome analytics 2018 ,		27	
48	DNA defects, epigenetics, and gene expression in cancer-adjacent breast: a study from The Cancer Genome Atlas. <i>Npj Breast Cancer</i> , 2016 , 2, 16007	7.8	25	
47	Loss of heterozygosity of essential genes represents a widespread class of potential cancer vulnerabilities. <i>Nature Communications</i> , 2020 , 11, 2517	17.4	21	
46	Mammalian SWI/SNF Complex Genomic Alterations and Immune Checkpoint Blockade in Solid Tumors. <i>Cancer Immunology Research</i> , 2020 , 8, 1075-1084	12.5	21	
45	RPC4046, A Novel Anti-interleukin-13 Antibody, Blocks IL-13 Binding to IL-13 🛭 and 🖺 Receptors: A Randomized, Double-Blind, Placebo-Controlled, Dose-Escalation First-in-Human Study. <i>Advances in Therapy</i> , 2017 , 34, 1364-1381	4.1	19	
44	Role of the Raf/mitogen-activated protein kinase pathway in p21ras desensitization. <i>Journal of Biological Chemistry</i> , 1996 , 271, 16674-7	5.4	17	
43	The protein-tyrosine kinase fer associates with signaling complexes containing insulin receptor substrate-1 and phosphatidylinositol 3-kinase. <i>Journal of Biological Chemistry</i> , 2000 , 275, 38995-9000	5.4	16	

42	Effects of verapamil on histamine-and carbachol-induced contraction of pulmonary tissues in vitro. <i>Chest</i> , 1984 , 86, 762-6	5.3	16
41	Pooled Genomic Screens Identify Anti-apoptotic Genes as Targetable Mediators of Chemotherapy Resistance in Ovarian Cancer. <i>Molecular Cancer Research</i> , 2019 , 17, 2281-2293	6.6	15
40	Diminished Efficacy of Programmed Death-(Ligand)1 Inhibition in STK11- and KEAP1-Mutant Lung Adenocarcinoma Is Affected by KRAS Mutation Status. <i>Journal of Thoracic Oncology</i> , 2021 ,	8.9	14
39	Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. <i>Cell</i> , 2021 , 184, 6119-6137.e26	56.2	13
38	Ancestry-specific predisposing germline variants in cancer. <i>Genome Medicine</i> , 2020 , 12, 51	14.4	12
37	Recurrent hormone-binding domain truncated ESR1 amplifications in primary endometrial cancers suggest their implication in hormone independent growth. <i>Scientific Reports</i> , 2016 , 6, 25521	4.9	11
36	Extracellular Domain In-Frame Deletions Are Therapeutically Targetable Genomic Alterations That Function as Oncogenic Drivers in Cholangiocarcinoma. <i>Cancer Discovery</i> , 2021 , 11, 2488-2505	24.4	11
35	Genomic Characterization of Metastatic Breast Cancer. Clinical Cancer Research, 2021, 27, 1105-1118	12.9	11
34	Amplification Associates with Aggressive Phenotype but Not Markers of AKT-MTOR Signaling in Endometrial Carcinoma. <i>Clinical Cancer Research</i> , 2019 , 25, 334-345	12.9	9
33	Molecular Characterization and Therapeutic Targeting of Colorectal Cancers Harboring Receptor Tyrosine Kinase Fusions. <i>Clinical Cancer Research</i> , 2021 , 27, 1695-1705	12.9	9
32	Endometrial Carcinoma Recurrence Score (ECARS) validates to identify aggressive disease and associates with markers of epithelial-mesenchymal transition and PI3K alterations. <i>Gynecologic Oncology</i> , 2014 , 134, 599-606	4.9	8
31	Functional comparison of recombinant acidic mammalian chitinase with enzyme from murine bronchoalveolar lavage. <i>Protein Expression and Purification</i> , 2011 , 75, 55-62	2	8
30	Abstract S2-04: Comprehensive molecular characterization of invasive lobular breast tumors 2015 ,		7
29	Synthetic Lethal Interaction between the ESCRT Paralog Enzymes VPS4A and VPS4B in Cancers Harboring Loss of Chromosome 18q or 16q. <i>Cell Reports</i> , 2020 , 33, 108493	10.6	7
28	Activity of PD-1 blockade with Nivolumab among patients with recurrent atypical/anaplastic meningioma: Phase II trial results. <i>Neuro-Oncology</i> , 2021 ,	1	7
27	Discovery and Features of an Alkylating Signature in Colorectal Cancer. Cancer Discovery, 2021, 11, 244	6 <i>-</i> 22455	7
26	Whole-genome characterization of lung adenocarcinomas lacking the RTK/RAS/RAF pathway. <i>Cell Reports</i> , 2021 , 34, 108707	10.6	7
25	Structure of PDE3A-SLFN12 complex reveals requirements for activation of SLFN12 RNase. <i>Nature Communications</i> , 2021 , 12, 4375	17.4	7

(2021-2020)

24	Mechanistic insights into cancer cell killing through interaction of phosphodiesterase 3A and schlafen family member 12. <i>Journal of Biological Chemistry</i> , 2020 , 295, 3431-3446	5.4	6
23	SMARCA4 and Other SWItch/Sucrose NonFermentable Family Genomic Alterations in NSCLC: Clinicopathologic Characteristics and Outcomes to Immune Checkpoint Inhibition. <i>Journal of Thoracic Oncology</i> , 2021 , 16, 1176-1187	8.9	6
22	Abstract 3302: The molecular landscape of oncogenic signaling pathways in The Cancer Genome Atlas 2018 ,		5
21	Effect of STK11 mutations on efficacy of PD-1 inhibition in non-small cell lung cancer (NSCLC) and dependence on KRAS mutation status <i>Journal of Clinical Oncology</i> , 2020 , 38, e15113-e15113	2.2	5
20	The tumor microenvironment drives transcriptional phenotypes and their plasticity in metastatic pancreatic cancer		5
19	Comprehensive molecular characterization and analysis of muscle-invasive urothelial carcinomas <i>Journal of Clinical Oncology</i> , 2017 , 35, 4500-4500	2.2	4
18	Quantification of aneuploidy in targeted sequencing data using ASCETS. <i>Bioinformatics</i> , 2021 , 37, 2461-	2⁄4£3	4
17	Genomic landscape of de novo stage IV breast cancer Journal of Clinical Oncology, 2019 , 37, 1022-1022	2.2	3
16	The Tangent copy-number inference pipeline for cancer genome analyses		3
15	A predominant enhancer co-amplified with the SOX2 oncogene is necessary and sufficient for its expression in squamous cancer. <i>Nature Communications</i> , 2021 , 12, 7139	17.4	3
14	Near haploidization is a genomic hallmark which defines a molecular subgroup of giant cell glioblastoma. <i>Neuro-Oncology Advances</i> , 2020 , 2, vdaa155	0.9	2
13	Abstract 2969: Progress in The Cancer Genome Atlas bladder cancer project 2015 ,		2
12	Precision medicine approach in kidney cancer: A pan renal cell carcinoma (RCC) study across three		1
	cancer genome atlas (TCGA) datasets for clinically relevant target identification <i>Journal of Clinical Oncology</i> , 2015 , 33, 4564-4564	2.2	1
11		2.2	1
11	Oncology, 2015 , 33, 4564-4564 Comprehensive characterization of 412 muscle invasive urothelial carcinomas: Final analysis of The		
	Oncology, 2015, 33, 4564-4564 Comprehensive characterization of 412 muscle invasive urothelial carcinomas: Final analysis of The Cancer Genome Atlas (TCGA) project Journal of Clinical Oncology, 2016, 34, 405-405 Changes in tumor mutational burden in serially biopsied non-small cell lung cancer Journal of	2.2	1
10	Oncology, 2015, 33, 4564-4564 Comprehensive characterization of 412 muscle invasive urothelial carcinomas: Final analysis of The Cancer Genome Atlas (TCGA) project Journal of Clinical Oncology, 2016, 34, 405-405 Changes in tumor mutational burden in serially biopsied non-small cell lung cancer Journal of Clinical Oncology, 2019, 37, e14286-e14286	2.2	1

6	Integrative modeling identifies genetic ancestry-associated molecular correlates in human cancer. <i>STAR Protocols</i> , 2021 , 2, 100483	1.4	O
5	Analytical protocol to identify local ancestry-associated molecular features in cancer. <i>STAR Protocols</i> , 2021 , 2, 100766	1.4	O
4	Characterizing the landscape of genomic variants in high-risk pediatric osteosarcoma <i>Journal of Clinical Oncology</i> , 2020 , 38, 11530-11530	2.2	
3	Somatic genomic alterations in urothelial cancer: Results of the Cancer Genome Atlas (TCGA) bladder cancer (BC) analysis <i>Journal of Clinical Oncology</i> , 2014 , 32, 285-285	2.2	
2	Clinicopathologic, genomic, and tumor microenvironment correlates of aneuploidy and immunotherapy outcomes in NSCLC <i>Journal of Clinical Oncology</i> , 2021 , 39, 9119-9119	2.2	
1	Changes in PD-L1 tumor proportion score are associated with CD274 gene (encoding PD-L1) copy number variation in non-small cell lung cancer <i>Journal of Clinical Oncology</i> , 2021 , 39, 9029-9029	2.2	