Rizlan Bernier-Latmani

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/740512/rizlan-bernier-latmani-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 4,094 100 35 h-index g-index citations papers 4,771 107 5.41 7.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
100	Biostimulation as a sustainable solution for acid neutralization and uranium immobilization post acidic in-situ recovery <i>Science of the Total Environment</i> , 2022 , 153597	10.2	1
99	Implantation of Chromate Transporter Increases Chromate Tolerance in <i>Frontiers in Microbiology</i> , 2022 , 13, 842623	5.7	
98	Growth and Persistence of an Aerobic Microbial Community in Wyoming Bentonite MX-80 Despite Anoxic Conditions <i>Frontiers in Microbiology</i> , 2022 , 13, 858324	5.7	Ο
97	Uranium Isotope Fractionation during the Anoxic Mobilization of Noncrystalline U(IV) by Ligand Complexation. <i>Environmental Science & Environmental Sc</i>	10.3	1
96	Energy efficiency and biological interactions define the core microbiome of deep oligotrophic groundwater. <i>Nature Communications</i> , 2021 , 12, 4253	17.4	6
95	Molecular techniques for understanding microbial abundance and activity in clay barriers used for geodisposal 2021 , 71-96		0
94	Associations between inorganic arsenic in rice and groundwater arsenic in the Mekong Delta. <i>Chemosphere</i> , 2021 , 265, 129092	8.4	8
93	Biological Reduction of a U(V)-Organic Ligand Complex. <i>Environmental Science & Environmental Science </i>	10.3	5
92	Ab initio and steady-state models for uranium isotope fractionation in multi-step biotic and abiotic reduction. <i>Geochimica Et Cosmochimica Acta</i> , 2021 , 307, 212-227	5.5	2
91	Role of Iron Sulfide Phases in the Stability of Noncrystalline Tetravalent Uranium in Sediments. <i>Environmental Science & Environmental Science & Envi</i>	10.3	8
90	Active sulfur cycling in the terrestrial deep subsurface. <i>ISME Journal</i> , 2020 , 14, 1260-1272	11.9	27
89	Ligand-Supported Facile Conversion of Uranyl(VI) into Uranium(IV) in Organic and Aqueous Media. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 6756-6759	16.4	14
88	In Situ Biostimulation of Cr(VI) Reduction in a Fast-Flowing Oxic Aquifer. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 2018-2030	3.2	2
87	Biogeography of microbial bile acid transformations along the murine gut. <i>Journal of Lipid Research</i> , 2020 , 61, 1450-1463	6.3	17
86	Nanoscale mechanism of UO formation through uranium reduction by magnetite. <i>Nature Communications</i> , 2020 , 11, 4001	17.4	23
85	Variability in Arsenic Methylation Efficiency across Aerobic and Anaerobic Microorganisms. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	3
84	Effect of Aging on the Stability of Microbially Reduced Uranium in Natural Sediment. <i>Environmental Science & Environmental Sc</i>	10.3	13

83	H2-fuelled microbial metabolism in Opalinus Clay. Applied Clay Science, 2019, 174, 69-76	5.2	7
82	Impact of iron reduction on the metabolism of Clostridium acetobutylicum. <i>Environmental Microbiology</i> , 2019 , 21, 3548-3563	5.2	17
81	Chromate tolerance and removal of bacterial strains isolated from uncontaminated and chromium-polluted environments. <i>World Journal of Microbiology and Biotechnology</i> , 2019 , 35, 56	4.4	7
80	As release under the microbial sulfate reduction during redox oscillations in the upper Mekong delta aquifers, Vietnam: A mechanistic study. <i>Science of the Total Environment</i> , 2019 , 663, 718-730	10.2	10
79	Interplay of S and As in Mekong Delta sediments during redox oscillations. <i>Geoscience Frontiers</i> , 2019 , 10, 1715-1729	6	4
78	Microbially Mediated Release of As from Mekong Delta Peat Sediments. <i>Environmental Science</i> & Environmental Science & Environmental &	10.3	7
77	Colloidal Size and Redox State of Uranium Species in the Porewater of a Pristine Mountain Wetland. <i>Environmental Science & Eamp; Technology</i> , 2019 , 53, 9361-9369	10.3	8
76	and characterization of bile acid transformations. <i>Gut Microbes</i> , 2019 , 10, 481-503	8.8	38
75	Microbial communities associated with uranium in-situ recovery mining process are related to acid mine drainage assemblages. <i>Science of the Total Environment</i> , 2018 , 628-629, 26-35	10.2	15
74	Arsenic Speciation in Mekong Delta Sediments Depends on Their Depositional Environment. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	34
73	The Small RNA RyhB Is a Regulator of Cytochrome Expression in. <i>Frontiers in Microbiology</i> , 2018 , 9, 268	5.7	8
72	Fifteen years of microbiological investigation in Opalinus Clay at the Mont Terri rock laboratory (Switzerland). Swiss Journal of Geosciences Supplement, 2018, 345-356		1
71	Biogeochemical Cycling by a Low-Diversity Microbial Community in Deep Groundwater. <i>Frontiers in Microbiology</i> , 2018 , 9, 2129	5.7	20
70	Chromate Resistance Mechanisms in Leucobacter chromiiresistens. <i>Applied and Environmental Microbiology</i> , 2018 , 84,	4.8	16
69	Biogenic non-crystalline U revealed as major component in uranium ore deposits. <i>Nature Communications</i> , 2017 , 8, 15538	17.4	44
68	The anaerobic corrosion of carbon steel in compacted bentonite exposed to natural Opalinus Clay porewater containing native microbial populations. <i>Corrosion Engineering Science and Technology</i> , 2017 , 52, 101-112	1.7	15
67	Arsenic Methylation Dynamics in a Rice Paddy Soil Anaerobic Enrichment Culture. <i>Environmental Science & Environmental Science</i>	10.3	32
66	Fifteen years of microbiological investigation in Opalinus Clay at the Mont Terri rock laboratory (Switzerland). Swiss Journal of Geosciences, 2017 , 110, 343-354	2.1	31

65	Fabric characteristics and mechanical response of bio-improved sand to various treatment conditions. <i>Geotechnique Letters</i> , 2016 , 6, 50-57	1.7	48
64	Products of in Situ Corrosion of Depleted Uranium Ammunition in Bosnia and Herzegovina Soils. <i>Environmental Science & Environmental &</i>	10.3	15
63	Rapid Mobilization of Noncrystalline U(IV) Coupled with FeS Oxidation. <i>Environmental Science & Environmental Science</i>	10.3	26
62	Phylogenetic comparison of species of subgroup 1a and description of sp. nov. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2016 , 66, 762-767	2.2	6
61	Functional Intestinal Bile Acid 7Dehydroxylation by Associated with Protection from Infection in a Gnotobiotic Mouse Model. <i>Frontiers in Cellular and Infection Microbiology</i> , 2016 , 6, 191	5.9	100
60	Variability in DPA and Calcium Content in the Spores of Species. <i>Frontiers in Microbiology</i> , 2016 , 7, 1791	5.7	16
59	Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock. <i>Nature Communications</i> , 2016 , 7, 12770	17.4	61
58	A minimalistic microbial food web in an excavated deep subsurface clay rock. <i>FEMS Microbiology Ecology</i> , 2016 , 92,	4.3	20
57	Rates of microbial hydrogen oxidation and sulfate reduction in Opalinus Clay rock. <i>Applied Geochemistry</i> , 2016 , 72, 42-50	3.5	12
56	Long-term in situ oxidation of biogenic uraninite in an alluvial aquifer: impact of dissolved oxygen and calcium. <i>Environmental Science & Environmental Science & Environment</i>	10.3	21
55	Uranium isotopes fingerprint biotic reduction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 5619-24	11.5	105
54	Mechanism of Uranium Reduction and Immobilization in Desulfovibrio vulgaris Biofilms. <i>Environmental Science & Environmental S</i>	10.3	27
53	Environmental Mineralogy: New Challenges, New Materials. <i>Elements</i> , 2015 , 11, 247-252	3.8	6
52	Geochemical controls on U immobilization in the subsurface 2015 , 477-486		
51	Fe(III) reduction during pyruvate fermentation by Desulfotomaculum reducens strain MI-1. <i>Geobiology</i> , 2014 , 12, 48-61	4.3	37
50	Geochemical control on uranium(IV) mobility in a mining-impacted wetland. <i>Environmental Science & Environmental Science</i>	10.3	35
49	Speciation and reactivity of uranium products formed during in situ bioremediation in a shallow alluvial aquifer. <i>Environmental Science & Environmental Science & Environment</i>	10.3	42
48	Investigation of sporulation in the Desulfotomaculum genus: a genomic comparison with the genera Bacillus and Clostridium. <i>Environmental Microbiology Reports</i> , 2014 , 6, 756-66	3.7	3

(2011-2014)

47	Characterization of the surfaceome of the metal-reducing bacterium Desulfotomaculum reducens. <i>Frontiers in Microbiology</i> , 2014 , 5, 432	5.7	13
46	Combined scanning transmission X-ray and electron microscopy for the characterization of bacterial endospores. <i>FEMS Microbiology Letters</i> , 2014 , 358, 188-93	2.9	8
45	Membrane Vesicles as a Novel Strategy for Shedding Encrusted Cell Surfaces. <i>Minerals (Basel, Switzerland)</i> , 2014 , 4, 74-88	2.4	14
44	The product of microbial uranium reduction includes multiple species with U(IV)phosphate coordination. <i>Geochimica Et Cosmochimica Acta</i> , 2014 , 131, 115-127	5.5	84
43	Biogeochemical controls on the product of microbial U(VI) reduction. <i>Environmental Science & Environmental Science & Technology</i> , 2013 , 47, 12351-8	10.3	67
42	Mobile uranium(IV)-bearing colloids in a mining-impacted wetland. <i>Nature Communications</i> , 2013 , 4, 294	12 7.4	112
41	Beam-induced oxidation of monomeric U(IV) species. <i>Journal of Synchrotron Radiation</i> , 2013 , 20, 197-9	2.4	9
40	Silver release from silver nanoparticles in natural waters. <i>Environmental Science & Environmental Sci</i>	10.3	228
39	Relative reactivity of biogenic and chemogenic uraninite and biogenic noncrystalline U(IV). <i>Environmental Science & Environmental Science & Environme</i>	10.3	69
38	Impact of microbial Mn oxidation on the remobilization of bioreduced U(IV). <i>Environmental Science</i> & Amp; Technology, 2013 , 47, 3606-13	10.3	15
	wamp, recimology, 2013 , 11, 3000-13		
37	Uranium redox transition pathways in acetate-amended sediments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 4506-4511	11.5	138
37	Uranium redox transition pathways in acetate-amended sediments. <i>Proceedings of the National</i>	11.5	138
	Uranium redox transition pathways in acetate-amended sediments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 4506-4511 Genome analysis of Desulfotomaculum kuznetsovii strain 17(T) reveals a physiological similarity	11.5	
36	Uranium redox transition pathways in acetate-amended sediments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 4506-4511 Genome analysis of Desulfotomaculum kuznetsovii strain 17(T) reveals a physiological similarity with Pelotomaculum thermopropionicum strain SI(T). <i>Standards in Genomic Sciences</i> , 2013 , 8, 69-87 Quantitative separation of monomeric U(IV) from UO2 in products of U(VI) reduction.	,	29
36 35	Uranium redox transition pathways in acetate-amended sediments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 4506-4511 Genome analysis of Desulfotomaculum kuznetsovii strain 17(T) reveals a physiological similarity with Pelotomaculum thermopropionicum strain SI(T). <i>Standards in Genomic Sciences</i> , 2013 , 8, 69-87 Quantitative separation of monomeric U(IV) from UO2 in products of U(VI) reduction. <i>Environmental Science & Desulfotomaculum Science & De</i>	,	29 89
36 35 34	Uranium redox transition pathways in acetate-amended sediments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 4506-4511 Genome analysis of Desulfotomaculum kuznetsovii strain 17(T) reveals a physiological similarity with Pelotomaculum thermopropionicum strain SI(T). <i>Standards in Genomic Sciences</i> , 2013 , 8, 69-87 Quantitative separation of monomeric U(IV) from UO2 in products of U(VI) reduction. <i>Environmental Science & Desulfotomaculum Frechnology</i> , 2012 , 46, 6150-7 Complete genome sequence of the sulfate-reducing firmicute Desulfotomaculum ruminis type strain (DL(T)). <i>Standards in Genomic Sciences</i> , 2012 , 7, 304-19	10.3	29 89 18
36353433	Uranium redox transition pathways in acetate-amended sediments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 4506-4511 Genome analysis of Desulfotomaculum kuznetsovii strain 17(T) reveals a physiological similarity with Pelotomaculum thermopropionicum strain SI(T). <i>Standards in Genomic Sciences</i> , 2013 , 8, 69-87 Quantitative separation of monomeric U(IV) from UO2 in products of U(VI) reduction. <i>Environmental Science & Desulfotomaculum Funinis type</i> , 2012 , 46, 6150-7 Complete genome sequence of the sulfate-reducing firmicute Desulfotomaculum ruminis type strain (DL(T)). <i>Standards in Genomic Sciences</i> , 2012 , 7, 304-19 Role of proteins in controlling selenium nanoparticle size. <i>Nanotechnology</i> , 2011 , 22, 195605 Composition, stability, and measurement of reduced uranium phases for groundwater	10.3	29 89 18

29	The Response of Shewanella oneidensis MR-1 to Cr(III) Toxicity Differs from that to Cr(VI). <i>Frontiers in Microbiology</i> , 2011 , 2, 223	5.7	22
28	Oxidative Dissolution of Biogenic Uraninite in Groundwater at Old Rifle, CO. <i>Environmental Science</i> & amp; Technology, 2011 , 45, 8748-54	10.3	63
27	The Response of Desulfotomaculum reducens MI-1 to U(VI) Exposure: A Transcriptomic Study. <i>Geomicrobiology Journal</i> , 2011 , 28, 483-496	2.5	15
26	Speciation-Dependent Kinetics of Uranium(VI) Bioreduction. <i>Geomicrobiology Journal</i> , 2011 , 28, 396-40	9 _{2.5}	25
25	The genome of the Gram-positive metal- and sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1. <i>Environmental Microbiology</i> , 2010 , 12, 2738-54	5.2	51
24	Effect of Competing Electron Acceptors on the Reduction of U(VI) by Desulfotomaculum reducens. <i>Geomicrobiology Journal</i> , 2010 , 27, 435-443	2.5	10
23	Non-uraninite products of microbial U(VI) reduction. <i>Environmental Science & Environmental Science & </i>	10.3	185
22	Speciation of naturally-accumulated uranium in an organic-rich soil of an alpine region (Switzerland). <i>Geochimica Et Cosmochimica Acta</i> , 2010 , 74, 2082-2098	5.5	80
21	U(VI) reduction by spores of Clostridium acetobutylicum. <i>Research in Microbiology</i> , 2010 , 161, 765-71	4	27
20	Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. <i>Environmental Science & Environmental Science & Envir</i>	10.3	201
19	SunCHem: an integrated process for the hydrothermal production of methane from microalgae and CO2 mitigation. <i>Journal of Applied Phycology</i> , 2009 , 21, 529-541	3.2	112
18	Metal reduction by spores of Desulfotomaculum reducens. <i>Environmental Microbiology</i> , 2009 , 11, 3007-	·1] .2	38
17	Effect of Mn(II) on the structure and reactivity of biogenic uraninite. <i>Environmental Science & Environmental Science & Technology</i> , 2009 , 43, 6541-7	10.3	30
16	Comparative dissolution kinetics of biogenic and chemogenic uraninite under oxidizing conditions in the presence of carbonate. <i>Geochimica Et Cosmochimica Acta</i> , 2009 , 73, 6065-6083	5.5	86
15	Structural similarities between biogenic uraninites produced by phylogenetically and metabolically diverse bacteria. <i>Environmental Science & Environmental Science & Environm</i>	10.3	44
14	Structure of biogenic uraninite produced by Shewanella oneidensis strain MR-1. <i>Environmental Science & Environmental Science </i>	10.3	111
13	Dissolution of biogenic and synthetic UO2 under varied reducing conditions. <i>Environmental Science & Environmental Science</i>	10.3	83
12	Genomic insights into Mn(II) oxidation by the marine alphaproteobacterium Aurantimonas sp. strain SI85-9A1. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 2646-58	4.8	68

LIST OF PUBLICATIONS

11	Biogenic Uraninite Nanoparticles and Their Importance for Uranium Remediation. <i>Elements</i> , 2008 , 4, 407-412	3.8	126
10	Uranyl reduction by Geobacter sulfurreducens in the presence or absence of iron 2008 , 725-732		O
9	Environmental implications of Mn(II)-reacted biogenic UO2 2008 , 755-762		
8	Toxicity of Cr(lll) to Shewanella sp. strain MR-4 during Cr(VI) reduction. <i>Environmental Science</i> & amp; Technology, 2007 , 41, 214-20	10.3	96
7	Global transcriptional profiling of Shewanella oneidensis MR-1 during Cr(VI) and U(VI) reduction. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 7453-60	4.8	114
6	Chemical speciation and toxicity of metals assessed by three bioluminescence-based assays using marine organisms. <i>Environmental Toxicology</i> , 2004 , 19, 161-78	4.2	20
5	Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. <i>Biotechnology and Bioengineering</i> , 2003 , 83, 627-37	4.9	132
4	Fate of uranyl in a quaternary system composed of uranyl, citrate, goethite, and Pseudomonas fluorescens. <i>Environmental Science & Environmental Scien</i>	10.3	16
3	Association of uranyl with the cell wall of Pseudomonas fluorescens inhibits metabolism. <i>Geochimica Et Cosmochimica Acta</i> , 2003 , 67, 4057-4066	5.5	24
2	Citrate Enhanced Uranyl Adsorption on Goethite: An EXAFS Analysis. <i>Journal of Colloid and Interface Science</i> , 2001 , 244, 211-219	9.3	55
1	Energy efficiency and biological interactions define the core microbiome of deep oligotrophic groundw	vater	2