Shikui Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7405085/publications.pdf

Version: 2024-02-01

		758635	839053	
17	860	12	18	
papers	citations	h-index	g-index	
18	18	18	1785	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Fe ₃ O ₄ â€Decorated Co ₉ S ₈ Nanoparticles In Situ Grown on Reduced Graphene Oxide: A New and Efficient Electrocatalyst for Oxygen Evolution Reaction. Advanced Functional Materials, 2016, 26, 4712-4721.	7.8	348
2	Metal-organic framework derived Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions. Journal of Colloid and Interface Science, 2018, 524, 93-101.	5.0	83
3	Morphology syntheses and properties of well-defined Prussian Blue nanocrystals by a facile solution approach. Journal of Colloid and Interface Science, 2009, 329, 188-195.	5.0	78
4	Engineering tin phosphides@carbon yolk–shell nanocube structures as a highly stable anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 16994-17000.	5 . 2	78
5	Metal organic framework derived NiFe@N-doped graphene microtube composites for hydrogen evolution catalyst. Carbon, 2017, 116, 68-76.	5.4	77
6	High energy density hybrid supercapacitor based on cobalt-doped nickel sulfide flower-like hierarchitectures deposited with nitrogen-doped carbon dots. Nanoscale, 2021, 13, 1689-1695.	2.8	44
7	Porous hollow carbon nanospheres embedded with well-dispersed cobalt monoxide nanocrystals as effective polysulfide reservoirs for high-rate and long-cycle lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 17352-17359.	5.2	31
8	Engineering multi-chambered carbon nanospheres@carbon as efficient sulfur hosts for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 10891-10897.	5. 2	24
9	Morphological synthesis of Prussian blue analogue Zn 3 [Fe(CN) 6] 2 â‹ x H 2 O micro-/nanocrystals and their excellent adsorption performance toward methylene blue. Journal of Colloid and Interface Science, 2016, 464, 191-197.	5.0	22
10	Organic–inorganic hybrid ZnS(butylamine) nanosheets and their transformation to porous ZnS. Journal of Colloid and Interface Science, 2016, 468, 136-144.	5.0	19
11	Shape- and size-controlled synthesis of coordination polymer {[Cu(en)2][KFe(CN)6]}n nano/micro-crystals. Journal of Materials Science, 2009, 44, 6447-6450.	1.7	18
12	Synthesis of AgCl hollow cubes and their application in photocatalytic degradation of organic pollutants. CrystEngComm, 2015, 17, 2517-2522.	1.3	13
13	One-pot synthesis, formation mechanism and near-infrared fluorescent properties of hollow and porous \hat{l}_{\pm} -mercury sulfide. CrystEngComm, 2013, 15, 4162.	1.3	7
14	Fabrication of N-doped Reduced Graphene Oxide/Ag ₃ PO ₄ Nanocomposite with Excellent Photocatalytic Activity for the Degradation of Organic Pollutants. Nano, 2017, 12, 1750013.	0.5	7
15	Preparation and Characterization of Natural Quercetin-Based Mongolia Medicine Sendeng-4 Nanoemulsion (N-QUE-NE) and its Antibacterial Activity. Current Drug Delivery, 2021, 18, 984-993.	0.8	5
16	Synthesis of Cdll–4,4′-bipy coordination polymer nanorods with tunable size and shape. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 41, 101-105.	1.3	2
17	Sendeng-4 Suppressed Melanoma Growth by Induction of Autophagy and Apoptosis. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-10.	0.5	2