Ewelina Zatorska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7404891/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Maximal Regularity for Compressible Two-Fluid System. Journal of Mathematical Fluid Mechanics, 2022, 24, 1.	1.0	2
2	On weak solutions to the compressible inviscid two-fluid model. Journal of Differential Equations, 2021, 299, 33-50.	2.2	3
3	Fast Non-mean-field Networks: Uniform in Time Averaging. SIAM Journal on Mathematical Analysis, 2021, 53, 937-972.	1.9	8
4	On the maximal L-L regularity of solutions to a general linear parabolic system. Journal of Differential Equations, 2020, 268, 3332-3369.	2.2	9
5	Pressureless Euler with nonlocal interactions as a singular limit of degenerate Navier-Stokes system. Journal of Mathematical Analysis and Applications, 2020, 492, 124400.	1.0	2
6	Large time behavior for a compressible two-fluid model with algebraic pressure closure and large initial data. Nonlinearity, 2020, 33, 4075-4094.	1.4	6
7	Modelling pattern formation through differential repulsion. Networks and Heterogeneous Media, 2020, 15, 307-352.	1.1	8
8	On the isothermal compressible multi-component mixture flow: The local existence and maximal Lpâ^'Lq regularity of solutions. Nonlinear Analysis: Theory, Methods & Applications, 2019, 189, 111571.	1.1	11
9	Finite-Energy Solutions for Compressible Two-Fluid Stokes System. Archive for Rational Mechanics and Analysis, 2019, 232, 987-1029.	2.4	30
10	On Strong Dynamics of Compressible Two-Component Mixture Flow. SIAM Journal on Mathematical Analysis, 2019, 51, 2793-2849.	1.9	14
11	On long-time asymptotics for viscous hydrodynamic models of collective behavior with damping and nonlocal interactions. Mathematical Models and Methods in Applied Sciences, 2019, 29, 31-63.	3.3	7
12	Singular Cucker–Smale Dynamics. Modeling and Simulation in Science, Engineering and Technology, 2019, , 201-243.	0.6	14
13	Transport of congestion in two-phase compressible/incompressible flows. Nonlinear Analysis: Real World Applications, 2018, 42, 485-510.	1.7	7
14	Existence of Stationary Weak Solutions for Compressible Heat Conducting Flows. , 2018, , 2595-2662.		7
15	Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions. Journal of Nonlinear Science, 2018, 28, 235-268.	2.1	12
16	Finite volume approximations of the Euler system with variable congestion. Computers and Fluids, 2018, 169, 23-39.	2.5	11
17	Incompressible limit of the Navier—Stokes model with a growth term. Nonlinear Analysis: Theory, Methods & Applications, 2017, 163, 34-59.	1.1	14
18	Kinetic Theory of Particle Interactions Mediated by Dynamical Networks. Multiscale Modeling and Simulation, 2017, 15, 1294-1323.	1.6	16

EWELINA ZATORSKA

#	Article	IF	CITATIONS
19	On the pressureless damped Euler–Poisson equations with quadratic confinement: Critical thresholds and large-time behavior. Mathematical Models and Methods in Applied Sciences, 2016, 26, 2311-2340.	3.3	33
20	Existence of weak solutions for compressible Navier–Stokes equations with entropy transport. Journal of Differential Equations, 2016, 261, 4448-4485.	2.2	30
21	On singular limits arising in the scale analysis of stratified fluid flows. Mathematical Models and Methods in Applied Sciences, 2016, 26, 419-443.	3.3	22
22	Existence of Stationary Weak Solutions for the Heat Conducting Flows. , 2016, , 1-68.		1
23	Heat-Conducting, Compressible Mixtures with Multicomponent Diffusion: Construction of a Weak Solution. SIAM Journal on Mathematical Analysis, 2015, 47, 3747-3797.	1.9	33
24	On the steady flow of reactive gaseous mixture. Analysis (Germany), 2015, 35, .	0.4	14
25	Two-velocity hydrodynamics in fluid mechanics: Part I Well posedness for zero Mach number systems. Journal Des Mathematiques Pures Et Appliquees, 2015, 104, 762-800.	1.6	20
26	Two-velocity hydrodynamics in fluid mechanics: Part II Existence of global κ-entropy solutions to the compressible Navier–Stokes systems with degenerate viscosities. Journal Des Mathematiques Pures Et Appliquees, 2015, 104, 801-836.	1.6	38
27	Free/Congested Two-Phase Model from Weak Solutions to Multi-Dimensional Compressible Navier-Stokes Equations. Communications in Partial Differential Equations, 2015, 40, 1558-1589.	2.2	29
28	Mixtures: Sequential Stability of Variational Entropy Solutions. Journal of Mathematical Fluid Mechanics, 2015, 17, 437-461.	1.0	12
29	On the large time behavior of the compressible gas–liquid drift-flux model with slip. Mathematical Models and Methods in Applied Sciences, 2015, 25, 2175-2215.	3.3	15
30	Multicomponent mixture model: the issue of existence via time discretization. Communications in Mathematical Sciences, 2015, 13, 1975-2003.	1.0	1
31	From the highly compressible Navier-Stokes equations to the porous medium equation rate of convergence. Discrete and Continuous Dynamical Systems, 2015, 36, 3107-3123.	0.9	2
32	Singular limit of a Navier–Stokes system leading to a free/congested zones two-phase model. Comptes Rendus Mathematique, 2014, 352, 685-690.	0.3	17
33	Approximate solutions to a model of two-component reactive flow. Discrete and Continuous Dynamical Systems - Series S, 2014, 7, 1079-1099.	1.1	20
34	Chemically reacting mixtures in terms of degenerated parabolic setting. Journal of Mathematical Physics, 2013, 54, 071501.	1.1	16
35	On the flow of chemically reacting gaseous mixture. Journal of Differential Equations, 2012, 253, 3471-3500.	2.2	32
36	Analysis of semidiscretization of the compressible Navier–Stokes equations. Journal of Mathematical Analysis and Applications, 2012, 386, 559-580.	1.0	3

#	Article	IF	CITATIONS
37	Analysis of nonlocal model of compressible fluid in 1-D. Mathematical Methods in the Applied Sciences, 2011, 34, 198-212.	2.3	о
38	On the steady flow of a multicomponent, compressible, chemically reacting gas. Nonlinearity, 2011, 24, 3267-3278.	1.4	18