List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7404816/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineered antibody fragments and the rise of single domains. Nature Biotechnology, 2005, 23, 1126-1136.	17.5	1,680
2	Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 2010, 468, 647-652.	27.8	1,481
3	Seasonality and the dynamics of infectious diseases. Ecology Letters, 2006, 9, 467-484.	6.4	1,162
4	Prevention of Population Cycles by Parasite Removal. Science, 1998, 282, 2256-2258.	12.6	761
5	Pathways to zoonotic spillover. Nature Reviews Microbiology, 2017, 15, 502-510.	28.6	702
6	Is a healthy ecosystem one that is rich in parasites?. Trends in Ecology and Evolution, 2006, 21, 381-385.	8.7	687
7	Epidemic Dynamics at the Human-Animal Interface. Science, 2009, 326, 1362-1367.	12.6	554
8	Do Parasites make Prey Vulnerable to Predation? Red Grouse and Parasites. Journal of Animal Ecology, 1992, 61, 681.	2.8	401
9	Filling key gaps in population and community ecology. Frontiers in Ecology and the Environment, 2007, 5, 145-152.	4.0	401
10	Ecological dynamics of emerging bat virus spillover. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142124.	2.6	375
11	Emerging human infectious diseases and the links to global food production. Nature Sustainability, 2019, 2, 445-456.	23.7	362
12	Keeping the herds healthy and alert: implications of predator control for infectious disease. Ecology Letters, 2003, 6, 797-802.	6.4	357
13	Regulation and Stability of a Free-Living Host-Parasite System: Trichostrongylus tenuis in Red Grouse. II. Population Models. Journal of Animal Ecology, 1992, 61, 487.	2.8	287
14	Negative effects of changing temperature on amphibian immunity under field conditions. Functional Ecology, 2006, 20, 819-828.	3.6	281
15	Competition and mutualism among the gut helminths of a mammalian host. Nature, 2004, 428, 840-844.	27.8	272
16	Design and application of diabodies, triabodies and tetrabodies for cancer targeting. Journal of Immunological Methods, 2001, 248, 47-66.	1.4	255
17	Regulation and Stability of a Free-Living Host-Parasite System: Trichostrongylus tenuis in Red Grouse. I. Monitoring and Parasite Reduction Experiments. Journal of Animal Ecology, 1992, 61, 477.	2.8	249
18	Competition mediated by parasites: biological and theoretical progress. Trends in Ecology and Evolution, 1998, 13, 387-390.	8.7	248

#	Article	IF	CITATIONS
19	Parasites, disease and the structure of ecological communities. Trends in Ecology and Evolution, 1986, 1, 11-15.	8.7	228
20	Evaluating the links between climate, disease spread, and amphibian declines. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17436-17441.	7.1	223
21	The Effect of a Parasitic Nematode on the Breeding Production of Red Grouse. Journal of Animal Ecology, 1986, 55, 85.	2.8	221
22	High avidity scFv multimers; diabodies and triabodies. Journal of Immunological Methods, 1999, 231, 177-189.	1.4	189
23	The Moran effect: a cause of population synchrony. Trends in Ecology and Evolution, 1999, 14, 1-2.	8.7	188
24	Empirical evidence for key hosts in persistence of a tick-borne disease. International Journal for Parasitology, 2003, 33, 909-917.	3.1	181
25	Does biodiversity protect humans against infectious disease?. Ecology, 2014, 95, 817-832.	3.2	176
26	Convalescent plasma anti–SARS-CoV-2 spike protein ectodomain and receptor-binding domain IgG correlate with virus neutralization. Journal of Clinical Investigation, 2020, 130, 6728-6738.	8.2	172
27	Towards common ground in the biodiversity–disease debate. Nature Ecology and Evolution, 2020, 4, 24-33.	7.8	170
28	Persistence of Tick-borne Virus in the Presence of Multiple Host Species: Tick Reservoirs and Parasite Mediated Competition. Journal of Theoretical Biology, 1999, 200, 111-118.	1.7	169
29	Dimeric and trimeric antibodies: high avidity scFvs for cancer targeting. New Biotechnology, 2001, 18, 95-108.	2.7	168
30	Multiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	164
31	UNDERSTANDING THE NET EFFECTS OF PESTICIDES ON AMPHIBIAN TREMATODE INFECTIONS. Ecological Applications, 2008, 18, 1743-1753.	3.8	163
32	Large Shifts in Pathogen Virulence Relate to Host Population Structure. Science, 2004, 303, 842-844.	12.6	162
33	Land use-induced spillover: a call to action to safeguard environmental, animal, and human health. Lancet Planetary Health, The, 2021, 5, e237-e245.	11.4	154
34	Parasites and climate synchronize red grouse populations. Nature, 2005, 433, 737-741.	27.8	146
35	Sacred Cows and Sympathetic Squirrels: The Importance of Biological Diversity to Human Health. PLoS Medicine, 2006, 3, e231.	8.4	144
36	The role of host sex in parasite dynamics: field experiments on the yellow-necked mouse Apodemus flavicollis. Ecology Letters, 2003, 7, 88-94.	6.4	143

#	Article	IF	CITATIONS
37	Unraveling the disease consequences and mechanisms of modular structure in animal social networks. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4165-4170.	7.1	142
38	Recombinant antibody fragments. Current Opinion in Biotechnology, 1998, 9, 395-402.	6.6	121
39	Peak shift and epidemiology in a seasonal host–nematode system. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1163-1169.	2.6	116
40	Recombinant anti-sialidase single-chain variable fragment antibody. Characterization, formation of dimer and higher-molecular-mass multimers and the solution of the crystal structure of the single-chain variable fragment/sialidase complex. FEBS Journal, 1994, 221, 151-157.	0.2	115
41	Raptors and Red Grouse: Conservation Conflicts and Management Solutions. Conservation Biology, 2000, 14, 95-104.	4.7	113
42	Ecology, evolution and spillover of coronaviruses from bats. Nature Reviews Microbiology, 2022, 20, 299-314.	28.6	108
43	LOCALIZED DEER ABSENCE LEADS TO TICK AMPLIFICATION. Ecology, 2006, 87, 1981-1986.	3.2	102
44	Comparison of social networks derived from ecological data: implications for inferring infectious disease dynamics. Journal of Animal Ecology, 2009, 78, 1015-1022.	2.8	102
45	Molecular epidemiology of Rabbit haemorrhagic disease virus. Journal of General Virology, 2002, 83, 2461-2467.	2.9	101
46	Are indirect measures of abundance a useful index of population density? The case of red grouse harvesting. Oikos, 2003, 100, 439-446.	2.7	99
47	The effect of aggressiveness on the population dynamics of a territorial bird. Nature, 2003, 421, 737-739.	27.8	98
48	Parasite co-infection and interaction as drivers of host heterogeneity. International Journal for Parasitology, 2008, 38, 371-380.	3.1	95
49	Transmission of louping ill virus between infected and uninfected ticks co-feeding on mountain hares. Medical and Veterinary Entomology, 1997, 11, 172-176.	1.5	94
50	Parasites, info-disruption, and the ecology of fear. Oecologia, 2009, 159, 447-454.	2.0	93
51	Disease persistence and apparent competition in a three-host community: an empirical and analytical study of large-scale, wild populations. Journal of Animal Ecology, 2001, 70, 1053-1061.	2.8	92
52	Thresholds for disease persistence in models for tick-borne infections including non-viraemic transmission, extended feeding and tick aggregation. Journal of Theoretical Biology, 2003, 224, 359-376.	1.7	92
53	Faecal egg counts provide a reliable measure of Trichostrongylus tenuis intensities in free-living red grouse Lagopus lagopus scoticus. Journal of Helminthology, 2004, 78, 69-76.	1.0	92
54	Parasite transmission: reconciling theory and reality. Journal of Animal Ecology, 2002, 71, 893-905.	2.8	91

#	Article	IF	CITATIONS
55	Evolutionary History and Attenuation of Myxoma Virus on Two Continents. PLoS Pathogens, 2012, 8, e1002950.	4.7	91
56	Breaking beta: deconstructing the parasite transmission function. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160084.	4.0	91
57	Triabodies: single chain Fv fragments without a linker form trivalent trimers. FEBS Letters, 1997, 409, 437-441.	2.8	90
58	Climate change and infectious diseases: Can we meet the needs for better prediction?. Climatic Change, 2013, 118, 625-640.	3.6	88
59	Field evidence for apparent competition mediated via the shared parasites of two gamebird species. Ecology Letters, 2000, 3, 10-14.	6.4	87
60	scFv multimers of the anti-neuraminidase antibody NC10: length of the linker between VH and VL domains dictates precisely the transition between diabodies and triabodies. Protein Engineering, Design and Selection, 1999, 12, 597-604.	2.1	84
61	Transmission, infectivity and survival of Diplostomum spathaceum cercariae. Parasitology, 2003, 127, 217-224.	1.5	84
62	Hantavirus and arenavirus antibody prevalence in rodents and humans in Trentino, Northern Italy. Epidemiology and Infection, 2006, 134, 830-836.	2.1	83
63	Climate disruption and parasite–host dynamics: patterns and processes associated with warming and the frequency of extreme climatic events. Journal of Helminthology, 2006, 80, 175-182.	1.0	83
64	Testing the role of parasites in driving the cyclic population dynamics of a gamebird. Ecology Letters, 2006, 9, 410-418.	6.4	82
65	Habitat loss and raptor predation: disentangling long– and short–term causes of red grouse declines. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 651-656.	2.6	80
66	Identifying disease reservoirs in complex systems: mountain hares as reservoirs of ticks and louping-ill virus, pathogens of red grouse. Journal of Animal Ecology, 2003, 72, 177-185.	2.8	80
67	Does elevated testosterone result in increased exposure and transmission of parasites?. Ecology Letters, 2009, 12, 528-537.	6.4	79
68	Parasite invasion following host reintroduction: a case study of Yellowstone's wolves. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2840-2851.	4.0	77
69	High-level temperature-induced synthesis of an antibody VH-domain in Escherichia coli using the PelB secretion signal. Gene, 1992, 113, 95-99.	2.2	76
70	The role of shared parasites in the exclusion of wildlife hosts:Heterakis gallinarumin the ring-necked pheasant and the grey partridge. Journal of Animal Ecology, 2000, 69, 829-840.	2.8	76
71	Pneumonia in bighorn sheep: Risk and resilience. Journal of Wildlife Management, 2018, 82, 32-45.	1.8	75
72	Persistence and transmission of tick-borne viruses: <i>lxodes ricinus</i> and louping-ill virus in red grouse populations. Parasitology, 1995, 111, S49-S58.	1.5	74

#	Article	IF	CITATIONS
73	Generating super-shedders: co-infection increases bacterial load and egg production of a gastrointestinal helminth. Journal of the Royal Society Interface, 2013, 10, 20120588.	3.4	74
74	ScFv multimers of the anti-neuraminidase antibody NC10: shortening of the linker in single-chain Fv fragment assembled in VL to VH orientation drives the formation of dimers, trimers, tetramers and higher molecular mass multimers. Protein Engineering, Design and Selection, 2000, 13, 565-574.	2.1	73
75	Searching for mechanisms of synchrony in spatially structured gamebird populations. Journal of Animal Ecology, 2000, 69, 620-638.	2.8	71
76	Eight challenges in modelling disease ecology in multi-host, multi-agent systems. Epidemics, 2015, 10, 26-30.	3.0	69
77	Recombinant antibodies for cancer diagnosis and therapy. Expert Opinion on Biological Therapy, 2003, 3, 305-318.	3.1	68
78	Social living mitigates the costs of a chronic illness in a cooperative carnivore. Ecology Letters, 2015, 18, 660-667.	6.4	67
79	The Effect of Vaccination on the Evolution and Population Dynamics of Avian Paramyxovirus-1. PLoS Pathogens, 2010, 6, e1000872.	4.7	65
80	Patterns of parasite aggregation in the wild European rabbit (Oryctolagus cuniculus). International Journal for Parasitology, 2001, 31, 1421-1428.	3.1	64
81	Spatioâ€ŧemporal dynamics of pneumonia in bighorn sheep. Journal of Animal Ecology, 2013, 82, 518-528.	2.8	62
82	Transmission Dynamics and Host-Parasite Interactions of Trichostrongylus tenuis in Red Grouse (Lagopus lagopus scoticus). Journal of Parasitology, 1997, 83, 194.	0.7	60
83	Regulation of nematode fecundity in the ring-necked pheasant (Phasianus colchicus): not just density dependence. Parasitology, 1999, 118, 417-423.	1.5	60
84	Patterns of cercarial production fromDiplostomum spathaceum: terminal investment or bet hedging?. Parasitology, 2004, 129, 87-92.	1.5	60
85	Recombinant antineuraminidase single chain antibody: Expression, characterization, and crystallization in complex with antigen. Proteins: Structure, Function and Bioinformatics, 1993, 16, 57-63.	2.6	58
86	The effect of single and concomitant pathogen infections on condition and fecundity of the wild rabbit (). International Journal for Parasitology, 2005, 35, 1509-1515.	3.1	58
87	PARASITES PREVENT SUMMER BREEDING IN WHITE-FOOTED MICE, <i>PEROMYSCUS LEUCOPUS </i> . Ecology, 2008, 89, 2251-2258.	3.2	58
88	Seasonality, cohort-dependence and the development of immunity in a natural host–nematode system. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 511-518.	2.6	57
89	The Role of Vector Trait Variation in Vector-Borne Disease Dynamics. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	57
90	Tick-borne encephalitis virus in northern Italy: molecular analysis, relationships with density and seasonal dynamics of Ixodes ricinus. Medical and Veterinary Entomology, 2001, 15, 304-313.	1.5	56

#	Article	IF	CITATIONS
91	The influence of a parasite community on the dynamics of a host population: a longitudinal study on willow ptarmigan and their parasites. Oikos, 2005, 111, 377-391.	2.7	53
92	Seasonal variation of tsetse fly species abundance and prevalence of trypanosomes in the Maasai Steppe, Tanzania. Journal of Vector Ecology, 2017, 42, 24-33.	1.0	53
93	Parasites reduce territorial behaviour in red grouse (Lagopus lagopus scoticus). Ecology Letters, 2001, 4, 139-143.	6.4	52
94	Bacteriophage-mediated competition in Bordetella bacteria. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1843-1848.	2.6	52
95	Disease dynamics during wildlife translocations: disruptions to the host population and potential consequences for transmission in desert tortoise contact networks. Animal Conservation, 2014, 17, 27-39.	2.9	51
96	Interactions between intrinsic and extrinsic mechanisms in a cyclic species: testosterone increases parasite infection in red grouse. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2299-2304.	2.6	50
97	Sin Nombre hantavirus decreases survival of male deer mice. Oecologia, 2012, 169, 431-439.	2.0	50
98	Prevalence, intensity and aggregation of intestinal parasites in mountain hares and their potential impact on population dynamics. International Journal for Parasitology, 2005, 35, 367-373.	3.1	49
99	Hibernation patterns in mammals: a role for bacterial growth?. Functional Ecology, 2006, 20, 471-477.	3.6	49
100	Consistent effects of pesticides on community structure and ecosystem function in freshwater systems. Nature Communications, 2020, 11, 6333.	12.8	49
101	Role of small mammals in the persistence of Louping-ill virus: field survey and tick co-feeding studies. Medical and Veterinary Entomology, 2000, 14, 277-282.	1.5	47
102	The role of invertebrates in the diet, growth and survival of red grouse (Lagopus lagopus scoticus) chicks. Journal of Zoology, 2001, 254, 137-145.	1.7	47
103	Separating Behavioral and Physiological Mechanisms in Testosteroneâ€Mediated Tradeâ€Offs. American Naturalist, 2005, 166, 158-168.	2.1	47
104	Optimal infection strategies: should macroparasites hedge their bets?. Oikos, 2002, 96, 92-101.	2.7	46
105	Transmission dynamics of a trematode parasite: exposure, acquired resistance and parasite aggregation. Parasitology Research, 2004, 92, 183-188.	1.6	46
106	Network transmission inference: Host behavior and parasite life cycle make social networks meaningful in disease ecology. Ecological Applications, 2013, 23, 1906-1914.	3.8	46
107	Orientation of antigen binding sites in dimeric and trimeric single chain Fv antibody fragments. FEBS Letters, 1998, 425, 479-484.	2.8	44
108	Synthesis of high avidity antibody fragments (scFv multimers) for cancer imaging. Journal of Immunological Methods, 2000, 242, 193-204.	1.4	43

#	Article	IF	CITATIONS
109	Differential impact of a shared nematode parasite on two gamebird hosts: implications for apparent competition. Parasitology, 2001, 122, 187-93.	1.5	43
110	Aggregation of Argulus coregoni (Crustacea: Branchiura) on rainbow trout (Oncorhynchus mykiss): a consequence of host susceptibility or exposure?. Parasitology, 2005, 130, 169-176.	1.5	43
111	Host contact and shedding patterns clarify variation in pathogen exposure and transmission in threatened tortoise <i>Copherus agassizii</i> : implications for disease modelling and management. Journal of Animal Ecology, 2016, 85, 829-842.	2.8	43
112	Territorial behaviour and population dynamics in red grouse Lagopus lagopus scoticus. I. Population experiments. Journal of Animal Ecology, 2003, 72, 1073-1082.	2.8	42
113	Rising burden of immature sheep ticks (Ixodes ricinus) on red grouse (Lagopus lagopus scoticus) chicks in the Scottish uplands. Medical and Veterinary Entomology, 2004, 18, 67-70.	1.5	42
114	The effects of social structure and sex-biased transmission on macroparasite infection. Parasitology, 2008, 135, 1561-1569.	1.5	42
115	The decline of Black Grouse in Scotland and northern England. Bird Study, 1995, 42, 122-131.	1.0	41
116	Temporal dynamics of grouse populations at the southern edge of their distribution. Ecography, 1999, 22, 374-383.	4.5	41
117	Analysing noisy time–series: describing regional variation in the cyclic dynamics of red grouse. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1609-1617.	2.6	41
118	Multiannual patterns of influenza A transmission in Chinese live bird market systems. Influenza and Other Respiratory Viruses, 2013, 7, 97-107.	3.4	41
119	The Ecology of Nipah Virus in Bangladesh: A Nexus of Land-Use Change and Opportunistic Feeding Behavior in Bats. Viruses, 2021, 13, 169.	3.3	41
120	Effects of necklace radio transmitters on survival and breeding success of red grouse <i>Lagopus lagopus scoticus</i> . Wildlife Biology, 1995, 1, 121-126.	1.4	40
121	Synchrony, scale and temporal dynamics of rock partridge (Alectoris graeca saxatilis) populations in the Dolomites. Journal of Animal Ecology, 1999, 68, 540-549.	2.8	40
122	Long-term survival of New Zealand rabbit haemorrhagic disease virus RNA in wild rabbits, revealed by RT-PCR and phylogenetic analysis. Journal of General Virology, 2003, 84, 3079-3086.	2.9	40
123	Ageâ€specific infectious period shapes dynamics of pneumonia in bighorn sheep. Ecology Letters, 2017, 20, 1325-1336.	6.4	39
124	Trophic interactions and population growth rates: describing patterns and identifying mechanisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 1259-1271.	4.0	38
125	Estimating distemper virus dynamics among wolves and grizzly bears using serology and Bayesian stateâ€space models. Ecology and Evolution, 2018, 8, 8726-8735.	1.9	38
126	<i>Heligmosomoides polygyrus</i> reduces infestation of <i>lxodes ricinus</i> in free-living yellow-necked mice, <i>Apodemus flavicollis</i> . Parasitology, 2009, 136, 305-316.	1.5	37

#	Article	IF	CITATIONS
127	Does the early frog catch the worm? Disentangling potential drivers of a parasite age–intensity relationship in tadpoles. Oecologia, 2011, 165, 1031-1042.	2.0	35

128 Costs and benefits of group living with disease: a case study of pneumonia in bighorn lambs (<i>Ovis) Tj ETQq0 0 0 rgBT /Ovgflock 10 T

129	The role of sex in parasite dynamics: Model simulations on transmission of Heligmosomoides polygyrus in populations of yellow-necked mice, Apodemus flavicollis. International Journal for Parasitology, 2007, 37, 341-349.	3.1	34
130	Towards a Sustainable One Health Approach to Crimean–Congo Hemorrhagic Fever Prevention: Focus Areas and Gaps in Knowledge. Tropical Medicine and Infectious Disease, 2020, 5, 113.	2.3	34
131	Ecological countermeasures for preventing zoonotic disease outbreaks: when ecological restoration is a human health imperative. Restoration Ecology, 2021, 29, e13357.	2.9	34
132	Experimentally increased aggressiveness reduces population kin structure and subsequent recruitment in red grouse <i>Lagopus lagopus scoticus</i> . Journal of Animal Ecology, 2005, 74, 488-497.	2.8	33
133	What is the role of small rodents in the transmission cycle of Trypanosoma cruzi and Trypanosoma evansi (Kinetoplastida Trypanosomatidae)? A study case in the Brazilian Pantanal. Acta Tropica, 2009, 111, 102-107.	2.0	33
134	Do parasite burdens in spring influence condition and fecundity of female mountain hares <i>Lepus timidus</i> ?. Wildlife Biology, 2004, 10, 171-176.	1.4	33
135	Construction of recombinant extended single-chain antibody peptide conjugates for use in the diagnosis of HIV-1 and HIV-2. Journal of Immunological Methods, 1996, 192, 13-23.	1.4	32
136	Genome Scale Evolution of Myxoma Virus Reveals Host-Pathogen Adaptation and Rapid Geographic Spread. Journal of Virology, 2013, 87, 12900-12915.	3.4	32
137	Energetic costs of mange in wolves estimated from infrared thermography. Ecology, 2016, 97, 1938-1948.	3.2	32
138	Effects of pesticides on exposure and susceptibility to parasites can be generalised to pesticide class and type in aquatic communities. Ecology Letters, 2019, 22, 962-972.	6.4	32
139	The emergence of rabbit haemorrhagic disease virus: will a non-pathogenic strain protect the UK?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 1087-1095.	4.0	31
140	Parasite-Mediated and Direct Competition in a Two-Host Shared Macroparasite System. Theoretical Population Biology, 2000, 57, 13-34.	1.1	30
141	Dose–response and transmission: the nexus between reservoir hosts, environment and recipient hosts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190016.	4.0	30
142	Use of Exposure History to Identify Patterns of Immunity to Pneumonia in Bighorn Sheep (Ovis) Tj ETQq0 0 0 rgB	BT Overloo 2.5	ck 10 Tf 50 I

143	Parasite-mediated competition between pheasant and grey partridge: a preliminary investigation. Oecologia, 1999, 119, 378-382.	2.0	28
144	Host Exclusion and Coexistence in Apparent and Direct Competition: An Application of Bifurcation Theory. Theoretical Population Biology, 1999, 56, 48-64.	1.1	28

#	Article	IF	CITATIONS
145	Noncovalent scFv multimers of tumor-targeting anti-Lewisy hu3S193 humanized antibody. Protein Science, 2003, 12, 734-747.	7.6	28
146	FIELD EVIDENCE FOR LEECH-BORNE TRANSMISSION OF AMPHIBIAN ICHTHYOPHONUS SP. Journal of Parasitology, 2006, 92, 1256-1264.	0.7	28
147	Acellular pertussis vaccination facilitates <i>Bordetella parapertussis</i> infection in a rodent model of bordetellosis. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2017-2025.	2.6	28
148	Inferring social structure and its drivers from refuge use in the desert tortoise, a relatively solitary species. Behavioral Ecology and Sociobiology, 2016, 70, 1277-1289.	1.4	28
149	Construction, expression and characterisation of a single-chain diabody derived from a humanised anti-Lewis Y cancer targeting antibody using a heat-inducible bacterial secretion vector. Cancer Immunology, Immunotherapy, 2001, 50, 241-250.	4.2	27
150	The interaction between the parasites and predators of Red Grouse Lagopus lagopus scoticus. Ibis, 1995, 137, S87.	1.9	27
151	Could parasites destabilize mouse populations? The potential role of Pterygodermatites peromysci in the population dynamics of free-living mice, Peromyscus leucopus. International Journal for Parasitology, 2009, 39, 1253-1262.	3.1	27
152	Disease introduction is associated with a phase transition in bighorn sheep demographics. Ecology, 2016, 97, 2593-2602.	3.2	27
153	Brood defence in a precocial species: variations in the distraction displays of red grouse, Lagopus lagopus scoticus. Animal Behaviour, 1990, 40, 254-261.	1.9	26
154	Optimal application strategies for entomopathogenic nematodes: integrating theoretical and empirical approaches. Journal of Applied Ecology, 2002, 39, 481-492.	4.0	26
155	Pastoral production is associated with increased <i>peste des petits ruminants </i> seroprevalence in northern Tanzania across sheep, goats and cattle. Epidemiology and Infection, 2019, 147, e242.	2.1	25
156	Estimating the cause and rate of mortality in red grouse <i>Lagopus lagopus scoticus</i> . Wildlife Biology, 1998, 4, 65-71.	1.4	25
157	Infected Coexistence Instability With and Without Density-Dependent Regulation. Journal of Theoretical Biology, 1997, 185, 345-356.	1.7	24
158	Large-scale bacterial fermentation and isolation of scFv multimers using a heat-inducible bacterial expression vector. Journal of Immunological Methods, 2002, 262, 217-227.	1.4	24
159	The role of non-viraemic transmission on the persistence and dynamics of a tick borne virus ? Louping ill in red grouse (Lagopus lagopus scoticus) and mountain hares (Lepus timidus). Journal of Mathematical Biology, 2004, 48, 119-134.	1.9	24
160	Parasite age-intensity relationships in red-spotted newts: Does immune memory influence salamander disease dynamics?. International Journal for Parasitology, 2009, 39, 231-241.	3.1	24
161	Contact and contagion: Probability of transmission given contact varies with demographic state in bighorn sheep. Journal of Animal Ecology, 2017, 86, 908-920.	2.8	24
162	Ticks need not bite their red grouse hosts to infect them with louping ill virus. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S202-5.	2.6	23

#	Article	IF	CITATIONS
163	Pathogen Interactions, Population Cycles, and Phase Shifts. American Naturalist, 2008, 171, 176-182.	2.1	23
164	Male hosts are responsible for the transmission of a trophically transmitted parasite, Pterygodermatites peromysci, to the intermediate host in the absence of sex-biased infection. International Journal for Parasitology, 2009, 39, 1263-1268.	3.1	23
165	Evaluating the Efficacy of Entomopathogenic Nematodes for the Biological Control of Crop Pests: A Nonequilibrium Approach. American Naturalist, 2001, 158, 408-425.	2.1	22
166	Epidemiology of rabbit haemorrhagic disease virus in the United Kingdom: evidence for seasonal transmission by both virulent and avirulent modes of infection. Epidemiology and Infection, 2004, 132, 555-567.	2.1	22
167	THE POTENTIAL ROLE OF STRONGYLOIDES ROBUSTUS ON PARASITE-MEDIATED COMPETITION BETWEEN TWO SPECIES OF FLYING SQUIRRELS (GLAUCOMYS). Journal of Wildlife Diseases, 2010, 46, 229-235.	0.8	22
168	Does biodiversity protect humans against infectious disease? Reply. Ecology, 2016, 97, 543-546.	3.2	22
169	ECOLOGY: Vole Stranglers and Lemming Cycles. Science, 2003, 302, 797-798.	12.6	21
170	The shape of red grouse cycles. Journal of Animal Ecology, 2004, 73, 767-776.	2.8	21
171	Comparative Analysis of the Complete Genome Sequence of the California MSW Strain of Myxoma Virus Reveals Potential Host Adaptations. Journal of Virology, 2013, 87, 12080-12089.	3.4	21
172	Parasite-Mediated Competition among Red-Legged Partridges and Other Lowland Gamebirds. Journal of Wildlife Management, 2002, 66, 445.	1.8	20
173	Can parasites synchronise the population fluctuations of sympatric tetraonids? -examining some minimum conditions. Oikos, 2005, 109, 429-434.	2.7	20
174	Bridging Taxonomic and Disciplinary Divides in Infectious Disease. EcoHealth, 2011, 8, 261-267.	2.0	20
175	Efficacy of acaricidal tags and pour-on as prophylaxis against ticks and louping-ill in red grouse. Medical and Veterinary Entomology, 1997, 11, 389-393.	1.5	19
176	Presence of Segmented Flavivirus Infections in North America. Emerging Infectious Diseases, 2020, 26, 1810-1817.	4.3	19
177	Islands in the desert: Species delimitation and evolutionary history of Pseudotetracha tiger beetles (Coleoptera: Cicindelidae: Megacephalini) from Australian salt lakes. Molecular Phylogenetics and Evolution, 2016, 101, 279-285.	2.7	18
178	Geographical and seasonal patterns of mortality in red grouse <i>Lagopus lagopus scoticus</i> populations. Wildlife Biology, 1997, 3, 79-87.	1.4	18
179	Epidemiological consequences of a pathogen having both virulent and avirulent modes of transmission: the case of rabbit haemorrhagic disease virus. Epidemiology and Infection, 2002, 129, 665-677.	2.1	17
180	Identifying the Age Cohort Responsible for Transmission in a Natural Outbreak of Bordetella bronchiseptica. PLoS Pathogens, 2010, 6, e1001224.	4.7	17

#	Article	IF	CITATIONS
181	The ecology of movement and behaviour: a saturated tripartite network for describing animal contacts. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180670.	2.6	17
182	Harvesting unstable populations: red grouse Lagopus lagopus scoticus (Lath.) in the United Kingdom. Wildlife Biology, 2001, 7, 189-195.	1.4	16
183	Use of bioluminescent bacterial biosensors to investigate the role of freeâ€living helminths as reservoirs and vectors of <i>Salmonella</i> . Environmental Microbiology Reports, 2009, 1, 198-207.	2.4	16
184	The relative importance of host characteristics and co-infection in generating variation in <i>Heligmosomoides polygyrus</i> fecundity. Parasitology, 2010, 137, 1003-1012.	1.5	16
185	Disease invasion: impacts on biodiversity and human health. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2804-2806.	4.0	16
186	Sexâ€biased transmission of a complex lifeâ€cycle parasite: why males matter. Oikos, 2012, 121, 1446-1453.	2.7	15
187	The blackburni/murchisona species complex in Australian Pseudotetracha (Coleoptera: Carabidae:) Tj ETQq1 1 0. Systematics and Evolutionary Research, 2012, 50, 177-183.	784314 rg 1.4	BT /Overlock 15
188	Variation of tsetse fly abundance in relation to habitat and host presence in the Maasai Steppe, Tanzania. Journal of Vector Ecology, 2017, 42, 34-43.	1.0	15
189	Definitive identification of louping ill virus by RT-PCR and sequencing in field populations of Ixodes ricinus on the Lochindorb Estate. Archives of Virology, 1997, 142, 1181-1191.	2.1	14
190	The role of lambs in louping-ill virus amplification. Parasitology, 2000, 120, 97-104.	1.5	14
191	Modelling the efficacy of entomopathogenic nematodes in the regulation of invertebrate pests in glasshouse crops. Journal of Applied Ecology, 2000, 37, 309.	4.0	14
192	SENSITIVITY TO ASSUMPTIONS IN MODELS OF GENERALIST PREDATION ON A CYCLIC PREY. Ecology, 2007, 88, 2576-2586.	3.2	14
193	Parasite-induced Changes in the Anti-predator Behavior of a Cricket Intermediate Host. Ethology, 2011, 117, 1019-1026.	1.1	14
194	Complex life cycle of Pterygodermatites peromysci, a trophically transmitted parasite of the white-footed mouse (Peromyscus leucopus). Parasitology Research, 2012, 110, 483-487.	1.6	14
195	Patterns of tsetse abundance and trypanosome infection rates among habitats of surveyed villages in Maasai steppe of northern Tanzania. Infectious Diseases of Poverty, 2017, 6, 126.	3.7	14
196	Parasites take control. Nature, 2000, 406, 33-34.	27.8	13
197	Response to enrichment, type and timing: small mammals vary in their response to a springtime cicada but not a carbohydrate pulse. Journal of Animal Ecology, 2009, 78, 202-209.	2.8	13
198	Strong density-dependent competition and acquired immunity constrain parasite establishment: Implications for parasite aggregation. International Journal for Parasitology, 2011, 41, 505-511.	3.1	13

#	Article	IF	CITATIONS
199	Transmission history of SARS-CoV-2 in humans and white-tailed deer. Scientific Reports, 2022, 12, .	3.3	13
200	Group density, disease, and season shape territory size and overlap of social carnivores. Journal of Animal Ecology, 2021, 90, 87-101.	2.8	12
201	Transmission ecology and the structure of parasite communities in small mammals. , 2006, , 349-369.		12
202	Are grouse populations unstable at the southern end of their range?. Wildlife Biology, 2000, 6, 213-218.	1.4	12
203	Fostering landscape immunity to protect human health: A scienceâ€based rationale for shifting conservation policy paradigms. Conservation Letters, 2022, 15, .	5.7	12
204	Mountain hares, louping-ill, red grouse and harvesting: complex interactions but few data. Journal of Animal Ecology, 2004, 73, 811-813.	2.8	11
205	Complex immune responses and molecular reactions to pathogens and disease in a desert reptile () Tj ETQq1 1	0.784314 1.9	rgBT /Overloc 10
206	The slow dynamics of mycoplasma infections in a tortoise host reveal heterogeneity pertinent to pathogen transmission and monitoring. Epidemiology and Infection, 2019, 147, e12.	2.1	10
207	Peste des petits ruminants Virus Transmission Scaling and Husbandry Practices That Contribute to Increased Transmission Risk: An Investigation among Sheep, Goats, and Cattle in Northern Tanzania. Viruses, 2020, 12, 930.	3.3	10
208	Anticipating the Prevalence of Avian Influenza Subtypes H9 and H5 in Live-Bird Markets. PLoS ONE, 2013, 8, e56157.	2.5	10
209	Spatial aggregation and temporal migration of free-living stages of the parasitic nematode Trichostrongylus tenuis. Functional Ecology, 2000, 14, 468-473.	3.6	9
210	The dynamics of macroparasite host-self-infection: a study of the patterns and processes of pinworm (Oxyuridae) aggregation. Parasitology, 2011, 138, 619-627.	1.5	9
211	Which Parasites Should We be Most Concerned About in Wildlife Translocations?. EcoHealth, 2017, 14, 42-46.	2.0	9
212	Microbial Diversity in Bushmeat Samples Recovered from the Serengeti Ecosystem in Tanzania. Scientific Reports, 2019, 9, 18086.	3.3	9
213	Molecular species identification of bushmeat recovered from the Serengeti ecosystem in Tanzania. PLoS ONE, 2020, 15, e0237590.	2.5	9
214	Pesticides alter ecosystem respiration via phytoplankton abundance and community structure: Effects on the carbon cycle?. Global Change Biology, 2022, 28, 1091-1102.	9.5	9
215	Re-assessing the infection strategies of the entomopathogenic nematode Steinernema feltiae (Rhabditidae; Steinernematidae). Parasitology, 2000, 121, 211-216.	1.5	8
216	Investigating copperâ€regulated protein expression in Menkes fibroblasts using antibody microarrays. Proteomics, 2008, 8, 1819-1831.	2.2	8

#	Article	IF	CITATIONS
217	Effect of <i>Ascaridia compar</i> infection on rock partridge population dynamics: empirical and theoretical investigations. Oikos, 2011, 120, 1557-1567.	2.7	8
218	Dynamics of Hantavirus Infection in <i>Peromyscus leucopus</i> of Central Pennsylvania. Vector-Borne and Zoonotic Diseases, 2011, 11, 1459-1464.	1.5	8
219	Manipulation of host-resource dynamics impacts transmission of trophic parasites. International Journal for Parasitology, 2014, 44, 737-742.	3.1	8
220	A metapopulation model of social group dynamics and disease applied to Yellowstone wolves. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
221	From Protein to Pandemic: The Transdisciplinary Approach Needed to Prevent Spillover and the Next Pandemic. Viruses, 2021, 13, 1298.	3.3	8
222	Identifying Age Cohorts Responsible for Peste Des Petits Ruminants Virus Transmission among Sheep, Goats, and Cattle in Northern Tanzania. Viruses, 2020, 12, 186.	3.3	8
223	Territorial status and survival in red grouse Lagopus lagopus scoticus : hope for the doomed surplus?. Journal of Avian Biology, 2002, 33, 56-62.	1.2	7
224	Structure of an Influenza Neuraminidase–Diabody Complex by Electron Cryomicroscopy and Image Analysis. Journal of Molecular Biology, 2003, 334, 721-731.	4.2	7
225	Strategies for nematode transmission: selective migration of Trichostrongylus tenuis infective larvae. Journal of Helminthology, 2001, 75, 367-372.	1.0	6
226	Is the rock partridge Alectoris graeca saxatilis threatened in the Dolomitic Alps?. Animal Conservation, 2003, 6, 71-81.	2.9	6
227	Linking predator–prey interactions with exposure to a trophically transmitted parasite using <scp>PCR</scp> â€based analyses. Molecular Ecology, 2013, 22, 239-248.	3.9	6
228	Patterns and processes of pathogen exposure in gray wolves across North America. Scientific Reports, 2021, 11, 3722.	3.3	6
229	Parasitic Worms and Population Cycles of Red Grouse. , 2002, , .		6
230	Design and Production of Multimeric Antibody Fragments, Focused on Diabodies with Enhanced Clinical Efficacy. Methods in Molecular Biology, 2012, 907, 699-712.	0.9	5
231	Peromyscus as a model system for human hepatitis C: An opportunity to advance our understanding of a complex host parasite system. Seminars in Cell and Developmental Biology, 2017, 61, 123-130.	5.0	5
232	Identification of Bacillus anthracis, Brucella spp., and Coxiella burnetii DNA signatures from bushmeat. Scientific Reports, 2021, 11, 14876.	3.3	5
233	Examination of the interaction between ageâ€specific predation and chronic disease in the Greater Yellowstone Ecosystem. Journal of Animal Ecology, 2022, 91, 1373-1384.	2.8	5
234	Parasitic infections of birds. Parasitology Today, 1994, 10, 3-4.	3.0	4

#	Article	IF	CITATIONS
235	Gastrointestinal Helminths of the Masked Shrew, Sorex cinereus, from Pennsylvania. Comparative Parasitology, 2008, 75, 141-144.	0.4	4
236	Associating sex-biased and seasonal behaviour with contact patterns and transmission risk in GopherusAagassizii. Behaviour, 2018, 155, 585-619.	0.8	3
237	Taxonomy, systematics and biology of the Australian halotolerant wolf spider genus Tetralycosa (Araneae: Lycosidae: Artoriinae). European Journal of Taxonomy, 2017, , .	0.6	3
238	Linear gene fusions of antibody fragments with streptavidin can be linked to biotin labelled secondary molecules to form bispecific reagents. IUBMB Life, 1997, 42, 1179-1188.	3.4	1
239	Mycoplasma ovipneumoniae in bighorn sheep: from exploration to action. , 2019, , 368-396.		1
240	Molecular species identification of bushmeat recovered from the Serengeti ecosystem in Tanzania. , 2020, 15, e0237590.		0
241	Molecular species identification of bushmeat recovered from the Serengeti ecosystem in Tanzania. , 2020, 15, e0237590.		0
242	Molecular species identification of bushmeat recovered from the Serengeti ecosystem in Tanzania. , 2020, 15, e0237590.		0
243	Molecular species identification of bushmeat recovered from the Serengeti ecosystem in Tanzania. , 2020, 15, e0237590.		0