Keyan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7404503/publications.pdf

Version: 2024-02-01

54 4,092 32 54
papers citations h-index g-index

54 54 54 5376
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Metal–Organic Framework-Derived Tubular In ₂ O ₃ –C/CdIn ₂ S ₄ Heterojunction for Efficient Solar-Driven CO ₂ Conversion. ACS Applied Materials & Interfaces, 2022, 14, 20375-20384.	4.0	26
2	Solvothermal synthesis of 3D hierarchical Cu2FeSnS4 microspheres for photocatalytic degradation of organic pollutants. Environmental Research, 2022, 205, 112539.	3.7	7
3	An S-scheme heterojunction constructed from α-Fe ₂ O ₃ and In-doped carbon nitride for high-efficiency CO ₂ photoreduction. Catalysis Science and Technology, 2022, 12, 1520-1529.	2.1	16
4	Nitrogen-rich porous polymeric carbon nitride with enhanced photocatalytic activity for synergistic removal of organic and heavy metal pollutants. Environmental Science: Nano, 2022, 9, 2388-2401.	2.2	6
5	New insight into the mechanism of enhanced photo-Fenton reaction efficiency for Fe-doped semiconductors: A case study of Fe/g-C3N4. Catalysis Today, 2021, 371, 58-63.	2.2	36
6	Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water. Applied Catalysis B: Environmental, 2021, 284, 119742.	10.8	88
7	Evolution of Surface Oxidation on Ta ₃ N ₅ as Probed by a Photoelectrochemical Method. ACS Applied Materials & Distribution (1997) and the probability of the Photoelectrochemical Method. ACS Applied Materials & Distribution (1997) and Photoelectrochemical Method. ACS Applied Materials & Distribution (1997) and Distributio	4.0	12
8	Facile Construction of a Hollow In ₂ S ₃ /Polymeric Carbon Nitride Heterojunction for Efficient Visible-Light-Driven CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 5942-5951.	3.2	37
9	Influence of surfactant-assisted synthesis and different operational parameters on photocatalytic performance of Cu2FeSnS4 particles. Surfaces and Interfaces, 2021, 24, 101134.	1.5	5
10	Selfâ€Supporting 3D Carbon Nitride with Tunable n → Ï€* Electronic Transition for Enhanced Solar Hydrogen Production. Advanced Materials, 2021, 33, e2104361.	11.1	105
11	Solar-driven CO2 conversion over Co2+ doped 0D/2D TiO2/g-C3N4 heterostructure: Insights into the role of Co2+ and cocatalyst. Journal of CO2 Utilization, 2020, 38, 16-23.	3.3	49
12	A facile sulfur-assisted method to synthesize porous alveolate Fe/g-C3N4 catalysts with ultra-small cluster and atomically dispersed Fe sites. Chinese Journal of Catalysis, 2020, 41, 1198-1207.	6.9	37
13	Defects Promote Ultrafast Charge Separation in Graphitic Carbon Nitride for Enhanced Visibleâ€Lightâ€Driven CO ₂ Reduction Activity. Chemistry - A European Journal, 2019, 25, 5028-5035.	1.7	85
14	Controllable assembly of single/double-thin-shell g-C ₃ N ₄ vesicles <i>via</i> shape-selective solid-state templating method for efficient photocatalysis. Journal of Materials Chemistry A, 2019, 7, 17815-17822.	5.2	33
15	Facile and green synthesis of TiN/C as electrode materials for supercapacitors. Applied Surface Science, 2019, 470, 241-249.	3.1	22
16	Interfacial charge transfer in OD/2D defect-rich heterostructures for efficient solar-driven CO2 reduction. Applied Catalysis B: Environmental, 2019, 245, 760-769.	10.8	118
17	High-Density Ultra-small Clusters and Single-Atom Fe Sites Embedded in Graphitic Carbon Nitride (g-C ₃ N ₄) for Highly Efficient Catalytic Advanced Oxidation Processes. ACS Nano, 2018, 12, 9441-9450.	7.3	455
18	Surfactant-assisted synthesis of hierarchical NH ₂ -MIL-125 for the removal of organic dyes. RSC Advances, 2017, 7, 581-587.	1.7	50

#	Article	IF	CITATIONS
19	Effects of Monocarboxylic Acid Additives on Synthesizing Metal–Organic Framework NH ₂ -MIL-125 with Controllable Size and Morphology. Crystal Growth and Design, 2017, 17, 6586-6595.	1.4	55
20	In situ synthesis of titanium doped hybrid metal–organic framework UiO-66 with enhanced adsorption capacity for organic dyes. Inorganic Chemistry Frontiers, 2017, 4, 1870-1880.	3.0	96
21	Magnetic ordered mesoporous Fe 3 O 4 /CeO 2 composites with synergy of adsorption and Fenton catalysis. Applied Surface Science, 2017, 425, 526-534.	3.1	98
22	Synthesis of Fe/M (M = Mn, Co, Ni) bimetallic metal organic frameworks and their catalytic activity for phenol degradation under mild conditions. Inorganic Chemistry Frontiers, 2017, 4, 144-153.	3.0	131
23	Synthesis of magnetic porous Fe 3 O 4 /C/Cu 2 O composite as an excellent photo-Fenton catalyst under neutral condition. Journal of Colloid and Interface Science, 2016, 475, 119-125.	5.0	64
24	Controlled synthesis of mixed-valent Fe-containing metal organic frameworks for the degradation of phenol under mild conditions. Dalton Transactions, 2016, 45, 7952-7959.	1.6	43
25	High performance porous MnO@C composite anode materials for lithium-ion batteries. Electrochimica Acta, 2016, 188, 793-800.	2.6	51
26	Crystallization behavior of 3D-structured OMS-2 under hydrothermal conditions. CrystEngComm, 2015, 17, 3636-3644.	1.3	11
27	Synthesis of spinel LiMn2O4 cathode material by a modified solid state reaction. Functional Materials Letters, 2015, 08, 1540002.	0.7	5
28	Surfactant-assisted crystallization of porous Mn ₂ O ₃ anode materials for Li-ion batteries. CrystEngComm, 2015, 17, 5094-5100.	1.3	19
29	Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: the role of hydrofluoric acid in crystallization. CrystEngComm, 2015, 17, 6434-6440.	1.3	200
30	Facile synthesis of magnetic Fe ₃ O ₄ /CeCO ₃ OH composites with excellent adsorption capability for small cationic dyes. RSC Advances, 2015, 5, 94397-94404.	1.7	11
31	Facile synthesis of Fe-containing metal–organic frameworks as highly efficient catalysts for degradation of phenol at neutral pH and ambient temperature. CrystEngComm, 2015, 17, 7160-7168.	1.3	50
32	A rapid combustion route to synthesize high-performance nanocrystalline cathode materials for Li-ion batteries. CrystEngComm, 2014, 16, 10969-10976.	1.3	15
33	CoCl ₂ Designed as Excellent Pseudocapacitor Electrode Materials. ACS Sustainable Chemistry and Engineering, 2014, 2, 440-444.	3.2	67
34	CO ₂ Hydrogenation to Hydrocarbons over Iron-based Catalyst: Effects of Physicochemical Properties of Al ₂ O ₃ Supports. Industrial & Discrete amp; Engineering Chemistry Research, 2014, 53, 17563-17569.	1.8	76
35	Facile synthesis of iron-based compounds as high performance anode materials for Li-ion batteries. RSC Advances, 2014, 4, 36507.	1.7	15
36	Solvothermal synthesis of NH ₂ -MIL-125(Ti) from circular plate to octahedron. CrystEngComm, 2014, 16, 9645-9650.	1.3	187

#	Article	IF	Citations
37	Effect of Electrostatic and Size on Dopant Occupancy in Lithium Niobate Single Crystal. Inorganic Chemistry, 2013, 52, 10206-10210.	1.9	15
38	Water-soluble inorganic salts with ultrahigh specific capacitance: crystallization transformation investigation of CuCl2 electrodes. CrystEngComm, 2013, 15, 10367.	1.3	70
39	From chemistry to mechanics: bulk modulus evolution of Li–Si and Li–Sn alloys via the metallic electronegativity scale. Physical Chemistry Chemical Physics, 2013, 15, 17658.	1.3	34
40	Microwaveâ€"Hydrothermal Crystallization of Polymorphic MnO ₂ for Electrochemical Energy Storage. Journal of Physical Chemistry C, 2013, 117, 10770-10779.	1.5	168
41	SITE SELECTIVITY IN DOPED POLYANION CATHODE MATERIALS FOR Li -ION BATTERIES. Functional Materials Letters, 2013, 06, 1350043.	0.7	19
42	BAND GAP ENGINEERING OF CRYSTAL MATERIALS: BAND GAP ESTIMATION OF SEMICONDUCTORS VIA ELECTRONEGATIVITY. Functional Materials Letters, 2012, 05, 1260002.	0.7	25
43	Group Electronegativity for Prediction of Materials Hardness. Journal of Physical Chemistry A, 2012, 116, 6911-6916.	1.1	40
44	Crystallization design of MnO2 towards better supercapacitance. CrystEngComm, 2012, 14, 5892.	1.3	187
45	Solution-Phase Electronegativity Scale: Insight into the Chemical Behaviors of Metal Ions in Solution. Journal of Physical Chemistry A, 2012, 116, 4192-4198.	1.1	62
46	Solution reaction design: electroaccepting and electrodonating powers of ions in solution. Nanoscale Research Letters, 2012, 7, 6.	3.1	15
47	Electronegativityâ€related bulk moduli of crystal materials. Physica Status Solidi (B): Basic Research, 2011, 248, 1227-1236.	0.7	38
48	BAND GAP PREDICTION OF ALLOYED SEMICONDUCTORS. Functional Materials Letters, 2011, 04, 217-219.	0.7	18
49	Hardness of materials: studies at levels from atoms to crystals. Science Bulletin, 2009, 54, 131-136.	1.7	50
50	New development of concept of electronegativity. Science Bulletin, 2009, 54, 328-334.	4.3	24
51	Electronegativities of Elements in Covalent Crystals. Journal of Physical Chemistry A, 2008, 112, 7894-7897.	1.1	45
52	Electronegativity Identification of Novel Superhard Materials. Physical Review Letters, 2008, 100, 235504.	2.9	297
53	A new set of electronegativity scale for trivalent lanthanides. Physica Status Solidi (B): Basic Research, 2007, 244, 1982-1987.	0.7	28
54	Estimation of Electronegativity Values of Elements in Different Valence States. Journal of Physical Chemistry A, 2006, 110, 11332-11337.	1.1	576