
Maximilian I Ruge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7404008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Radiomics outperforms semantic features for prediction of response to stereotactic radiosurgery in brain metastases. Radiotherapy and Oncology, 2022, 166, 37-43.	0.3	10
2	Frame-based stereotactic implantation of cystoventricular shunts for treating acquired intracerebral cysts. Journal of Neurosurgery, 2022, 137, 227-234.	0.9	4
3	The Role of Stereotactic Radiosurgery in the Management of Foramen Magnum Meningiomas—A Multicenter Analysis and Review of the Literature. Cancers, 2022, 14, 341.	1.7	3
4	Oncologic Outcome and Immune Responses of Radiotherapy with Anti-PD-1 Treatment for Brain Metastases Regarding Timing and Benefiting Subgroups. Cancers, 2022, 14, 1240.	1.7	12
5	Accuracy of Robotic and Frame-Based Stereotactic Neurosurgery in a Phantom Model. Frontiers in Neurorobotics, 2022, 16, 762317.	1.6	4
6	ETMR-04. Embryonal tumor with multi-layered rosettes (ETMR) located in the brainstem: a case report on clinical decision-making and a multimodal, interdisciplinary treatment approach including interstitial brachytherapy. Neuro-Oncology, 2022, 24, i49-i50.	0.6	0
7	Primary Central Nervous System Lymphoma: Clinical Evaluation of Automated Segmentation on Multiparametric MRI Using Deep Learning. Journal of Magnetic Resonance Imaging, 2021, 53, 259-268.	1.9	19
8	Treatment Monitoring of Immunotherapy and Targeted Therapy Using ¹⁸ F-FET PET in Patients with Melanoma and Lung Cancer Brain Metastases: Initial Experiences. Journal of Nuclear Medicine, 2021, 62, 464-470.	2.8	25
9	Cyberknife® hypofractionated stereotactic radiosurgery (CK-hSRS) as salvage treatment for brain metastases. Journal of Cancer Research and Clinical Oncology, 2021, 147, 2765-2773.	1.2	3
10	Does therapeutic anticoagulation increase the risk of clinical relevant intracerebral haemorrhage in patients with solid malignancies and brain metastases?. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 571-571.	0.9	0
11	MLTI-03. The relevance of the count of brain metastases for treatment and outcome in NSCLC. Neuro-Oncology Advances, 2021, 3, iii13-iii13.	0.4	Ο
12	Stereotactic radiosurgery for treating meningiomas eligible for complete resection. Radiation Oncology, 2021, 16, 22.	1.2	11
13	NIMG-06. CHARACTERIZATION OF LONG-TERM METABOLIC CHANGES OF IRRADIATED BRAIN METASTASES USING SERIAL DYNAMIC FET PET IMAGING. Neuro-Oncology, 2021, 23, vi128-vi128.	0.6	Ο
14	NIMG-20. DIFFERENTIATION OF TREATMENT-RELATED CHANGES FROM TUMOR PROGRESSION FOLLOWING BRACHYTHERAPY IN PATIENTS WITH WHO II AND III GLIOMAS USING FET PET. Neuro-Oncology, 2021, 23, vi132-vi132.	0.6	0
15	NIMG-04. PREDICTING THE BRAF MUTATIONAL STATUS IN PATIENTS WITH MELANOMA BRAIN METASTASES USING RADIOMICS - A BICENTRIC STUDY. Neuro-Oncology, 2021, 23, vi127-vi128.	0.6	Ο
16	Impact of prescription isodose level and collimator selection on dose homogeneity and plan quality in robotic radiosurgery. Strahlentherapie Und Onkologie, 2021, , 1.	1.0	2
17	Stereotactic Radiosurgery of Cavernous Sinus Meningiomas. Journal of Neurological Surgery, Part B: Skull Base, 2020, 81, 158-164.	0.4	12
18	Stereotactic radiosurgery of benign brain tumors in elderly patients: evaluation of outcome and toxicity. Radiation Oncology, 2020, 15, 274.	1.2	6

MAXIMILIAN I RUGE

#	Article	IF	CITATIONS
19	Timing of Development of Symptomatic Brain Metastases from Non-Small Cell Lung Cancer: Impact on Symptoms, Treatment, and Survival in the Era of Molecular Treatments. Cancers, 2020, 12, 3618.	1.7	8
20	Applications of radiomics and machine learning for radiotherapy of malignant brain tumors. Strahlentherapie Und Onkologie, 2020, 196, 856-867.	1.0	76
21	Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data. Radiation Oncology, 2020, 15, 87.	1.2	68
22	Frame-based stereotactic biopsy of deep-seated and midline structures in 511 procedures: feasibility, risk profile, and diagnostic yield. Acta Neurochirurgica, 2019, 161, 2065-2071.	0.9	26
23	Monitoring Treatment Response to Erlotinib in EGFR-mutated Non–small-cell Lung Cancer Brain Metastases Using Serial O-(2-[18F]fluoroethyl)-L-tyrosine PET. Clinical Lung Cancer, 2019, 20, e148-e151.	1.1	11
24	Robotic Stereotactic Radiosurgery in Melanoma Patients with Brain Metastases under Simultaneous Anti-PD-1 Treatment. International Journal of Molecular Sciences, 2018, 19, 2653.	1.8	32
25	Acoustic Neuroma Treated with Stereotactic Radiosurgery: Follow-up of 335 Patients. World Neurosurgery, 2018, 116, e194-e202.	0.7	26
26	The Treatment of Cliomas in Adulthood. Deutsches Ärzteblatt International, 2018, 115, 356-364.	0.6	20
27	Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. NeuroImage: Clinical, 2018, 20, 537-542.	1.4	113
28	Stereotaktische Brachytherapie für Gliome. , 2018, , 63-75.		0
29	Long-term follow-up after stereotactic radiosurgery of intracanalicular acoustic neurinoma. Radiation Oncology, 2017, 12, 68.	1.2	27
30	Update on the diagnostic value and safety of stereotactic biopsy for pediatric brainstem tumors: a systematic review and meta-analysis of 735 cases. Journal of Neurosurgery: Pediatrics, 2017, 20, 261-268.	0.8	90
31	Feasibility, Risk Profile and Diagnostic Yield of Stereotactic Biopsy in Children and Young Adults with Brain Lesions. Klinische Padiatrie, 2017, 229, 133-141.	0.2	14
32	Stereotactic biopsy in elderly patients: risk assessment and impact on treatment decision. Journal of Neuro-Oncology, 2017, 134, 303-307.	1.4	17
33	SURG-24APPLICATION OF NANOTHERM®BY STEREOTACTIC GUIDANCE: A TECHNICAL NOTE. Neuro-Oncology, 2015, 17, v219.4-v219.	0.6	1
34	Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-l-tyrosine PET. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 685-695.	3.3	216
35	Intracranial stereotactic radiosurgery with an adapted linear accelerator vs. robotic radiosurgery. Strahlentherapie Und Onkologie, 2015, 191, 470-476.	1.0	26
36	Letter to the Editor: Low dose rate brachytherapy for the treatment of brain metastases. Journal of Neurosurgery, 2015, 123, 1110-1112.	0.9	2

MAXIMILIAN I RUGE

#	Article	IF	CITATIONS
37	Low-dose rate stereotactic iodine-125 brachytherapy for the treatment of inoperable primary and recurrent glioblastoma: single-center experience with 201 cases. Journal of Neuro-Oncology, 2014, 120, 615-623.	1.4	34
38	Brain Metastases: Treatment with Stereotactic lodine-125 Brachytherapy. Tumors of the Central Nervous System, 2014, , 173-186.	0.1	0
39	Differentiation of local tumor recurrence from radiation-induced changes after stereotactic radiosurgery for treatment of brain metastasis: case report and review of the literature. Radiation Oncology, 2013, 8, 52.	1.2	45
40	Stereotactic iodine-125 brachytherapy for the treatment of WHO grades II and III gliomas located in the central sulcus region. Neuro-Oncology, 2013, 15, 1721-1731.	0.6	24
41	Diagnostic Value and Safety of Stereotactic Biopsy for Brainstem Tumors. Neurosurgery, 2013, 72, 873-882.	0.6	83
42	Stereotactic iodine-125 brachytherapy for treatment of inoperable focal brainstem gliomas of WHO grades I and II: feasibility and long-term outcome. Journal of Neuro-Oncology, 2012, 109, 273-283.	1.4	29
43	Stereotactic iodine-125 brachytherapy for brain tumors: temporary versus permanent implantation. Radiation Oncology, 2012, 7, 94.	1.2	4
44	Stereotactic 125Iodine Brachytherapy for the Treatment of Singular Brain Metastases: Closing a Gap?. Neurosurgery, 2011, 68, 1209-1219.	0.6	39
45	Stereotactic Brachytherapy With Iodine-125 Seeds for the Treatment of Inoperable Low-Grade Gliomas in Children: Long-Term Outcome. Journal of Clinical Oncology, 2011, 29, 4151-4159.	0.8	66
46	Stereotactic brachytherapy of low-grade cerebral glioma after tumor resection. Neuro-Oncology, 2011, 13, 1133-1142.	0.6	33
47	Health-related quality of life and cognitive functioning in adult patients with supratentorial WHO gradeÂll glioma: status prior to therapy. Journal of Neuro-Oncology, 2011, 103, 129-136.	1.4	31
48	Stereotactic biopsy combined with stereotactic 125iodine brachytherapy for diagnosis and treatment of locally recurrent single brain metastases. Journal of Neuro-Oncology, 2011, 105, 109-118.	1.4	28
49	Comparison of Stereotactic Brachytherapy (125Iodine Seeds) with Stereotactic Radiosurgery (LINAC) for the Treatment of Singular Cerebral Metastases. Strahlentherapie Und Onkologie, 2011, 187, 7-14.	1.0	50
50	Intraoperative mapping of language functions: a longitudinal neurolinguistic analysis. Journal of Neurosurgery, 2008, 109, 583-592.	0.9	86