
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/740398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of High Molecular Weight Stereo-Di-Block Copolymers Driven by a Co-Initiator Free Catalyst. Polymers, 2022, 14, 232.	2.0	3
2	[4â€(2â€Hydroxyphenyl)imidazolium Salts as Organocatalysts for Cycloaddition of Isocyanates and Epoxides to Yield Oxazolidinâ€2â€ones. ChemistrySelect, 2022, 7, .	0.7	3
3	Carbon dioxide fixation into cyclic carbonates at room temperature catalyzed by heteroscorpionate aluminum complexes. Green Chemical Engineering, 2022, 3, 280-287.	3.3	4
4	Carbonation of epoxidized soybean oil in supercritical CO2 assisted by imidazole-based organocatalysts. Journal of CO2 Utilization, 2022, 61, 102060.	3.3	6
5	Synthesis of Nonisocyanate Poly(hydroxy)urethanes from Bis(cyclic carbonates) and Polyamines. Polymers, 2022, 14, 2719.	2.0	6
6	Homogeneous aluminum and iron catalysts for the synthesis of organic molecules and biodegradable polymers. , 2021, , 3-43.		0
7	Zinc-Catalyzed Hydroalkoxylation/Cyclization of Alkynyl Alcohols. Inorganic Chemistry, 2021, 60, 5322-5332.	1.9	5
8	Efficient Synthesis of Cyclic Carbonates from Unsaturated Acids and Carbon Dioxide and their Application in the Synthesis of Biobased Polyurethanes. ChemPlusChem, 2021, 86, 460-468.	1.3	11
9	Fast Addition of sâ€Block Organometallic Reagents to CO ₂ â€Derived Cyclic Carbonates at Room Temperature, Under Air, and in 2â€Methyltetrahydrofuran. ChemSusChem, 2021, 14, 2084-2092.	3.6	17
10	Ring-Opening Copolymerization of Cyclohexene Oxide and Cyclic Anhydrides Catalyzed by Bimetallic Scorpionate Zinc Catalysts. Polymers, 2021, 13, 1651.	2.0	5
11	Heteroscorpionate Rare-Earth Catalysts for the Low-Pressure Coupling Reaction of CO ₂ and Cyclohexene Oxide. Organometallics, 2021, 40, 1503-1514.	1.1	11
12	Efficient Bulky Organo-Zinc Scorpionates for the Stereoselective Production of Poly(rac-lactide)s. Polymers, 2021, 13, 2356.	2.0	5
13	Valorization of agricultural waste and CO2 into bioderived cyclic carbonates. Journal of Environmental Chemical Engineering, 2021, 9, 105464.	3.3	14
14	Tuning the Cytotoxicity of Bis-Phosphino-Amines Ruthenium(II) Para-Cymene Complexes for Clinical Development in Breast Cancer. Pharmaceutics, 2021, 13, 1559.	2.0	3
15	Efficient Production of Poly(Cyclohexene Carbonate) via ROCOP of Cyclohexene Oxide and CO2 Mediated by NNO-Scorpionate Zinc Complexes. Polymers, 2020, 12, 2148.	2.0	8
16	Controlled Delivery of BET-PROTACs: In Vitro Evaluation of MZ1-Loaded Polymeric Antibody Conjugated Nanoparticles in Breast Cancer. Pharmaceutics, 2020, 12, 986.	2.0	41
17	NNC-Scorpionate Zirconium-Based Bicomponent Systems for the Efficient CO ₂ Fixation into a Variety of Cyclic Carbonates. Inorganic Chemistry, 2020, 59, 12422-12430.	1.9	13
18	Bimetallic scorpionate-based helical organoaluminum complexes for efficient carbon dioxide fixation into a variety of cyclic carbonates. Catalysis Science and Technology, 2020, 10, 3265-3278.	2.1	27

#	Article	IF	CITATIONS
19	PEI-coated PLA nanoparticles to enhance the antimicrobial activity of carvacrol. Food Chemistry, 2020, 328, 127131.	4.2	46
20	Bimetallic Zinc Catalysts for Ring-Opening Copolymerization Processes. Inorganic Chemistry, 2020, 59, 8412-8423.	1.9	21
21	Screening and Preliminary Biochemical and Biological Studies of [RuCl(<i>p</i> -cymene)(<i>N</i> , <i>N</i> -bis(diphenylphosphino)-isopropylamine)][BF ₄] in Breast Cancer Models. ACS Omega, 2019, 4, 13005-13014.	1.6	7
22	Synthesis of an enantiopure scorpionate ligand by a nucleophilic addition to a ketenimine and a zinc initiator for the isoselective ROP of <i>rac</i> lactide. Chemical Communications, 2019, 55, 8947-8950.	2.2	9
23	Poly(Cyclohexene Phthalate) Nanoparticles for Controlled Dasatinib Delivery in Breast Cancer Therapy. Nanomaterials, 2019, 9, 1208.	1.9	24
24	Efficient CO ₂ fixation into cyclic carbonates catalyzed by NNO-scorpionate zinc complexes. Dalton Transactions, 2019, 48, 10733-10742.	1.6	25
25	Synthesis of helical aluminium catalysts for cyclic carbonate formation. Dalton Transactions, 2019, 48, 4218-4227.	1.6	33
26	Influence of the Counterion on the Synthesis of Cyclic Carbonates Catalyzed by Bifunctional Aluminum Complexes. Inorganic Chemistry, 2019, 58, 3396-3408.	1.9	46
27	Synthesis of Bio-Derived Cyclic Carbonates from Renewable Resources. ACS Sustainable Chemistry and Engineering, 2019, 7, 20126-20138.	3.2	48
28	Trastuzumab-Targeted Biodegradable Nanoparticles for Enhanced Delivery of Dasatinib in HER2+ Metastasic Breast Cancer. Nanomaterials, 2019, 9, 1793.	1.9	40
29	Study of the Coordination Modes of Hybrid NNCp Cyclopentadienyl/Scorpionate Ligands in Ir Compounds. Inorganic Chemistry, 2019, 58, 900-908.	1.9	4
30	Assessment of doxorubicin delivery devices based on tailored bare polycaprolactone against glioblastoma. International Journal of Pharmaceutics, 2019, 558, 110-119.	2.6	19
31	Bifunctional Aluminum Catalysts for the Chemical Fixation of Carbon Dioxide into Cyclic Carbonates. ACS Sustainable Chemistry and Engineering, 2018, 6, 5322-5332.	3.2	82
32	Amidinate Aluminium Complexes as Catalysts for Carbon Dioxide Fixation into Cyclic Carbonates. ChemCatChem, 2018, 10, 2271-2277.	1.8	62
33	Development of hydroxy-containing imidazole organocatalysts for CO ₂ fixation into cyclic carbonates. Catalysis Science and Technology, 2018, 8, 1981-1987.	2.1	78
34	Alternating Copolymerization of Epoxides and Anhydrides Catalyzed by Aluminum Complexes. ACS Omega, 2018, 3, 17581-17589.	1.6	21
35	Organo-Aluminum and Zinc Acetamidinates: Preparation, Coordination Ability, and Ring-Opening Polymerization Processes of Cyclic Esters. Inorganic Chemistry, 2018, 57, 12132-12142.	1.9	15
36	Versatile organoaluminium catalysts based on heteroscorpionate ligands for the preparation of polyesters. Dalton Transactions, 2018, 47, 7471-7479.	1.6	21

#	Article	IF	CITATIONS
37	Studies on Multinuclear Magnesium <i>tert</i> -Butyl Heteroscorpionates: Synthesis, Coordination Ability, and Heteroselective Ring-Opening Polymerization of <i>rac</i> -Lactide. Organometallics, 2017, 36, 884-897.	1.1	30
38	Highly thermally stable and robust enantiopure zirconium NNN-scorpionates for the controlled ring-opening polymerization of rac-lactide. Dalton Transactions, 2017, 46, 6654-6662.	1.6	10
39	Ringâ€opening polymerization and copolymerization of cyclic esters catalyzed by amidinate aluminum complexes. Journal of Polymer Science Part A, 2017, 55, 2397-2407.	2.5	32
40	An Efficient and Versatile Lanthanum Heteroscorpionate Catalyst for Carbon Dioxide Fixation into Cyclic Carbonates. ChemSusChem, 2017, 10, 2886-2890.	3.6	90
41	Mono- and binuclear chiral N,N,O-scorpionate zinc alkyls as efficient initiators for the ROP of rac-lactide. Dalton Transactions, 2017, 46, 15107-15117.	1.6	20
42	One omponent Aluminum(heteroscorpionate) Catalysts for the Formation of Cyclic Carbonates from Epoxides and Carbon Dioxide. ChemSusChem, 2017, 10, 1175-1185.	3.6	68
43	An Efficient and Tunable Route to Bis(1,2,3â€triazolâ€1â€yl)methaneâ€Based Nitrogen Compounds. European Journal of Organic Chemistry, 2016, 2016, 682-687.	1.2	13
44	Synthesis of Oxazolidinones from Epoxides and Isocyanates Catalysed by Aluminium Heteroscorpionate Complexes. ChemCatChem, 2016, 8, 2100-2108.	1.8	36
45	Heteroscorpionate Rare-Earth Catalysts for the Hydroalkoxylation/Cyclization of Alkynyl Alcohols. Organometallics, 2016, 35, 1802-1812.	1.1	21
46	Synthesis and Dynamic Behavior of Chiral NNOâ€Scorpionate Zinc Initiators for the Ringâ€Opening Polymerization of Cyclic Esters. European Journal of Inorganic Chemistry, 2016, 2016, 2562-2572.	1.0	13
47	Ring-opening copolymerisation of cyclohexene oxide and carbon dioxide catalysed by scorpionate zinc complexes. Polymer Chemistry, 2016, 7, 6475-6484.	1.9	26
48	Copolymerization of Cyclic Esters Controlled by Chiral NNO-Scorpionate Zinc Initiators. Organometallics, 2016, 35, 189-197.	1.1	41
49	Synthesis of Cyclic Carbonates Catalysed by Aluminium Heteroscorpionate Complexes. Chemistry - A European Journal, 2015, 21, 9850-9862.	1.7	104
50	Synthesis of new heteroscorpionate iridium(<scp>i</scp>) and iridium(<scp>iii</scp>) complexes. Dalton Transactions, 2015, 44, 6987-6998.	1.6	8
51	New Racemic and Single Enantiopure Hybrid Scorpionate/Cyclopentadienyl Magnesium and Zinc Initiators for the Stereoselective ROP of Lactides. Organometallics, 2015, 34, 3196-3208.	1.1	46
52	Synthesis and structural characterization of amido heteroscorpionate rare-earth metal complexes and hydroamination of aminoalkenes. New Journal of Chemistry, 2015, 39, 7672-7681.	1.4	16
53	Catalytic behaviour in the ring-opening polymerisation of organoaluminiums supported by bulky heteroscorpionate ligands. Dalton Transactions, 2015, 44, 12388-12400.	1.6	35
54	Unprecedented Formation of the First Alkalineâ€Earthâ€Metal Complex Bearing an Asymmetrical <i>gemâ€</i> Dithiolato Heteroscorpionato Ligand. European Journal of Inorganic Chemistry, 2014, 2014, 1922-1928.	1.0	4

#	Article	IF	CITATIONS
55	Enantiopure N,N,O-scorpionate zinc amide and chloride complexes as efficient initiators for the heteroselective ROP of cyclic esters. Dalton Transactions, 2014, 43, 17090-17100.	1.6	26
56	Synthesis and structural characterization of amido scorpionate rare earth metals complexes. Dalton Transactions, 2014, 43, 9586.	1.6	15
57	Synthesis of cyclic carbonates catalysed by aluminium heteroscorpionate complexes. Catalysis Science and Technology, 2014, 4, 1674-1684.	2.1	87
58	Stereoselective ROP of <i>rac</i> -Lactide Mediated by Enantiopure NNO-Scorpionate Zinc Initiators. Organometallics, 2014, 33, 1859-1866.	1.1	66
59	Ring-Opening (ROP) versus Ring-Expansion (REP) Polymerization of ε-Caprolactone To Give Linear or Cyclic Polycaprolactones. Macromolecules, 2013, 46, 6388-6394.	2.2	75
60	Heteroscorpionate Magnesium Alkyls Bearing Unprecedented Apical σ-C(sp ³)–Mg Bonds: Heteroselective Ring-Opening Polymerization of <i>rac</i> -Lactide. Inorganic Chemistry, 2013, 52, 12691-12701.	1.9	55
61	Heteroscorpionate aluminium complexes as chiral building blocks to engineer helical architectures. Dalton Transactions, 2013, 42, 14240.	1.6	13
62	Synthesis, structural characterization and catalytic evaluation of the ring-opening polymerization of discrete five-coordinate alkyl aluminium complexes. Dalton Transactions, 2013, 42, 9325.	1.6	50
63	Metal complexes with heteroscorpionate ligands based on the bis(pyrazol-1-yl)methane moiety: Catalytic chemistry. Coordination Chemistry Reviews, 2013, 257, 1806-1868.	9.5	155
64	Efficient Synthesis of an Unprecedented Enantiopure Hybrid Scorpionate/Cyclopentadienyl by Diastereoselective Nucleophilic Addition to a Fulvene. Organometallics, 2013, 32, 3437-3440.	1.1	57
65	New Highly Active Heteroscorpionate-Containing Lutetium Catalysts for the Hydroamination of Aminoalkenes: Isolation and Structural Characterization of a Dipyrrolidinide–Lutetium Complex. Organometallics, 2012, 31, 2244-2255.	1.1	39
66	Chiral <i>N</i> , <i>N</i> , <i>O</i> -Scorpionate Zinc Alkyls as Effective and Stereoselective Initiators for the Living ROP of Lactides. Organometallics, 2012, 31, 4191-4202.	1.1	58
67	Synthesis of cyclic carbonates using monometallic, and helical bimetallic, aluminium complexes. Catalysis Science and Technology, 2012, 2, 1021.	2.1	72
68	Heteroscorpionate rare-earth initiators for the controlled ring-opening polymerization of cyclic esters. Dalton Transactions, 2011, 40, 4687.	1.6	37
69	Stereoselective Production of Poly(<i>rac</i> -lactide) by ROP with Highly Efficient Bulky Heteroscorpionate Alkylmagnesium Initiators. Organometallics, 2011, 30, 2775-2789.	1.1	92
70	Neutral and Cationic Aluminum Complexes Supported by Acetamidate and Thioacetamidate Heteroscorpionate Ligands as Initiators for Ring-Opening Polymerization of Cyclic Esters. Organometallics, 2011, 30, 1507-1522.	1.1	77
71	Direct Synthesis of NNN-Donor Enantiopure Scorpionate Ligands by an Efficient Diastereoselective Nucleophilic Addition to Imines. Inorganic Chemistry, 2011, 50, 1826-1839.	1.9	20
72	Straightforward Generation of Helical Chirality Driven by a Versatile Heteroscorpionate Ligand: Selfâ€Assembly of a Metal Helicate by Using CHï£¿ï€ Interactions. Chemistry - A European Journal, 2010, 16, 8615-8619.	1.7	31

#	Article	IF	CITATIONS
73	New achiral and chiral NNE heteroscorpionate ligands. Synthesis of homoleptic lithium complexes as well as halide and alkyl scandium and yttrium complexes. Dalton Transactions, 2010, 39, 930-940.	1.6	36
74	Hybrid Scorpionate/Cyclopentadienyl Magnesium and Zinc Complexes: Synthesis, Coordination Chemistry, and Ring-Opening Polymerization Studies on Cyclic Esters. Inorganic Chemistry, 2010, 49, 2859-2871.	1.9	80
75	Ringâ€Opening Polymerization of Cyclic Esters by an Enantiopure Heteroscorpionate Rare Earth Initiator. Angewandte Chemie - International Edition, 2009, 48, 2176-2179.	7.2	83
76	Hybrid scorpionate/cyclopentadienyl titanium and zirconium complexes with alkoxide and imido ligands. Inorganica Chimica Acta, 2009, 362, 2909-2914.	1.2	10
77	On the Search for NNO-Donor Enantiopure Scorpionate Ligands and Their Coordination to Group 4 Metals. Inorganic Chemistry, 2009, 48, 5540-5554.	1.9	42
78	Synthesis, structures and ring-opening polymerization studies of new zinc chloride and amide complexes supported by amidinate heteroscorpionate ligands. Dalton Transactions, 2009, , 8054.	1.6	34
79	Recent Advances in the Design and Coordination Chemistry of Heteroscorpionate Ligands Bearing Stereogenic Centres. European Journal of Inorganic Chemistry, 2008, 2008, 5309-5326.	1.0	63
80	Versatile Scorpionates and New Developments in the Denticity Changes of NNCp Hybrid Scorpionate/Cyclopentadienyl Ligands in Sc and Y Compounds: From le ¹ -Nl· ⁵ -Cp to le ² -NNl· ⁵ -Cp. Inorganic Chemistry, 2008, 47, 4996-5005.	1.9	38
81	Nitric oxide binding and photodelivery based on ruthenium(ii) complexes of 4-arylazo-3,5-dimethylpyrazole. Dalton Transactions, 2008, , 3559.	1.6	21
82	Scandium and Yttrium Complexes Supported by NNCp Heteroscorpionate Ligands: Synthesis, Structure, and Polymerization of Ϊμ-Caprolactone. Organometallics, 2008, 27, 976-983.	1.1	61
83	Discrete Heteroscorpionate Lithium and Zinc Alkyl Complexes. Synthesis, Structural Studies, and ROP of Cyclic Esters. Organometallics, 2008, 27, 1310-1321.	1.1	72
84	Highly Diastereoselective Nucleophilic Addition to Myrtenal. Straightforward Synthesis of an Enantiopure Scorpionate Ligand. Inorganic Chemistry, 2007, 46, 8475-8477.	1.9	27
85	Lithium, Titanium, and Zirconium Complexes with Novel Amidinate Scorpionate Ligands. Inorganic Chemistry, 2007, 46, 1760-1770.	1.9	51
86	Well-Defined Alkyl Heteroscorpionate Magnesium Complexes as Excellent Initiators for the ROP of Cyclic Esters. Organometallics, 2007, 26, 6403-6411.	1.1	107
87	Expanding Heteroscorpionates. Facile Synthesis of New Hybrid Scorpionate/Cyclopentadienyl Ligands and Their Lithium and Group 4 Metal Compounds:  A Combined Experimental and Density Functional Theory Study. Organometallics, 2007, 26, 4310-4320.	1.1	38
88	Design of new heteroscorpionate ligands and their coordinative ability toward Group 4 transition metals; an efficient synthetic route to obtain enantiopure ligands. Dalton Transactions, 2006, , 4359-4370.	1.6	39
89	A Simple and Efficient Synthetic Route to Enantiopure Scorpionate Ligands. European Journal of Inorganic Chemistry, 2006, 2006, 707-710.	1.0	27
90	Ruthenium Complexes of the Scorpionate Ligand Bis(3,5-dimethylpyrazol-1-yl)dithioacetate and the Effect of Nitric Oxide Coordination. European Journal of Inorganic Chemistry, 2005, 2005, 3135-3140.	1.0	14

#	Article	IF	CITATIONS
91	First Complexes of Scandium and Yttrium with NNO and NNS Heteroscorpionate Ligands. Inorganic Chemistry, 2005, 44, 5336-5344.	1.9	41
92	New Complexes of Niobium(V) and Tantalum(V) with Monoanionic NNO Heteroscorpionate Ligands. European Journal of Inorganic Chemistry, 2004, 2004, 260-266.	1.0	30
93	Heteroscorpionate Ligands Based on Bis(pyrazol-1-yl)methane: Design and Coordination Chemistry. ChemInform, 2004, 35, no.	0.1	0
94	Titanium and niobium imido complexes stabilized by heteroscorpionate ligands. Dalton Transactions, 2004, , 3963-3969.	1.6	16
95	An Unprecedented Hybrid Scorpionate/Cyclopentadienyl Ligand. Journal of the American Chemical Society, 2004, 126, 1330-1331.	6.6	63
96	New Complexes of Zirconium(IV) and Hafnium(IV) with Heteroscorpionate Ligands and the Hydrolysis of Such Complexes To Give a Zirconium Cluster#. Inorganic Chemistry, 2004, 43, 1350-1358.	1.9	57
97	Heteroscorpionate ligands based on bis(pyrazol-1-yl)methane: design and coordination chemistry. Dalton Transactions, 2004, , 1499-1510.	1.6	207
98	Niobium complexes containing a new chiral heteroscorpionate ligand and the reactivity of such a complex with O2 to give the first gem-diolate niobium complex. Dalton Transactions, 2003, , 1614-1619.	1.6	32
99	Preparation of New Monoanionic "Scorpionate―Ligands:  Synthesis and Structural Characterization of Titanium(IV) Complexes Bearing This Class of Ligand. Inorganic Chemistry, 2002, 41, 5193-5202.	1.9	75
100	[H2N{B(C6F5)3}2]-:Â A New, Remarkably Stable Diborate Anion for Metallocene Polymerization Catalysts. Organometallics, 2002, 21, 451-453.	1.1	109
101	Synthesis, structure and catalytic activity of new iminophenolato complexes of scandium and yttrium. Journal of Organometallic Chemistry, 2002, 663, 63-69.	0.8	40
102	Polymerization of Ethylene by the Electrophilic Heteroscorpionate-Containing Complexes [TiCl3(bdmpza)] and [TiCl2(bdmpza){O(CH2)4Cl}] (bdmpza = Bis(3,5-dimethylpyrazol-1-yl)acetate). Organometallics, 2001, 20, 2428-2430.	1.1	64
103	Synthesis and spectroscopic characterization of α-keto ylide-containing Group 4 metal complexes. The X-ray molecular structure of [Cp*ZrCl3(2-TCMP)], Cp*=η5-C5Me5, 2-TCMP=[{2-thiazolylcarbonyl}methylene]triphenylphosphorane. Journal of Organometallic Chemistry, 2001, 629, 68-76.	0.8	1
104	Synthesis of Zirconium(IV) Monocyclopentadienylâ^'Aryloxy Complexes and Their Use in Catalytic Ethylene Polymerization. X-ray Structure of (η5-C5Me5)Zr{2,6-OC6H3(CH3)2}3. Organometallics, 2000, 19, 2837-2843.	1.1	52
105	A new type of monoanionic "scorpionate―ligand. Synthesis, spectroscopic characterisation and dynamic behaviour of some niobium(III) complexes. Dalton Transactions RSC, 2000, , 2367-2374.	2.3	55
106	Syntheses and crystal structures of lithium and niobium complexes containing a new type of monoanionic "scorpionate―ligand â€. Journal of the Chemical Society Dalton Transactions, 1999, , 3537-3539.	1.1	107
107	Phosphorus ylide-containing niobium complexes: preparation and characterization of homo- and heteronuclear compounds with an α -keto ylide ligand. Journal of Organometallic Chemistry, 1998, 570, 97-105.	0.8	12
108	New functionalized bis(pyrazol-1-yl)methane ligands. Synthesis, spectroscopic characterization of early and late transition metal complexes containing a functionalized N,N or P,P-chelate bis(5-diphenylphosphinopyrazol-1-yl)methane ligand. Journal of the Chemical Society Dalton Transactions, 1998, , 3737-3744.	1.1	35

#	Article	IF	CITATIONS
109	Synthesis and Characterization of New Niobium Hydridotris(3,5-dimethylpyrazol-1-yl)borato Complexes. Organometallics, 1998, 17, 3015-3019.	1.1	21
110	Phosphorus ylide niobium complexes; synthesis and characterization of the first α-keto ylide complexes, [{NbCl3(ylide-O,N)}2] and [NbCl3(ylide-O,N) (RCî—¼CRâ€ ²)] (ylide =) Tj ETQq0 0 0 rgBT /Overlock [NbCl3(NOSC4H2CHPPh3-O,N) (PhCî—¼CPr) (Ph = phenyl, Pr = propyl). Journal of Organometallic	.0 Tf 50 70 0.8	7 Td ([{2-thi 8
111	Chemistry, 1997, 542, 291-294. Closing the loop in the synthesis of heteroscorpionate-based aluminium helicates: catalytic studies for cyclic carbonate synthesis. Dalton Transactions, 0, , .	1.6	0