Marc-André Lécuyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7403536/publications.pdf

Version: 2024-02-01

16	991	15	17
papers	citations	h-index	g-index
18	18	18	1618
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Netrin 1 regulates blood–brain barrier function and neuroinflammation. Brain, 2015, 138, 1598-1612.	7.6	141
2	Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system. Brain, 2012, 135, 2906-2924.	7.6	128
3	Role of ninjurinâ€1 in the migration of myeloid cells to central nervous system inflammatory lesions. Annals of Neurology, 2011, 70, 751-763.	5.3	126
4	Glial influences on BBB functions and molecular players in immune cell trafficking. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 472-482.	3.8	117
5	Dual role of ALCAM in neuroinflammation and blood–brain barrier homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E524-E533.	7.1	77
6	Melanoma cell adhesion molecule–positive <scp>CD</scp> 8 <scp>T</scp> lymphocytes mediate central nervous system inflammation. Annals of Neurology, 2015, 78, 39-53.	5.3	61
7	ALCAM (CD166) is involved in extravasation of monocytes rather than T cells across the blood–brain barrier. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2894-2909.	4.3	53
8	Immunological and pathological characterization of fatal rebound MS activity following natalizumab withdrawal. Multiple Sclerosis Journal, 2017, 23, 72-81.	3.0	51
9	MicroRNA-223 protects neurons from degeneration in experimental autoimmune encephalomyelitis. Brain, 2019, 142, 2979-2995.	7.6	51
10	Activated leukocyte cell adhesion molecule regulates B lymphocyte migration across central nervous system barriers. Science Translational Medicine, 2019, 11, .	12.4	45
11	Isolation of endothelial cells, pericytes and astrocytes from mouse brain. PLoS ONE, 2019, 14, e0226302.	2.5	37
12	DICAM promotes T _H 17 lymphocyte trafficking across the blood-brain barrier during autoimmune neuroinflammation. Science Translational Medicine, 2022, 14, eabj0473.	12.4	27
13	Interleukin-26, preferentially produced by T $<$ sub $>$ H $<$ /sub $>$ 17 lymphocytes, regulates CNS barrier function. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	25
14	Neuronal microRNA regulation in Experimental Autoimmune Encephalomyelitis. Scientific Reports, 2018, 8, 13437.	3.3	24
15	IVIVC Assessment of Two Mouse Brain Endothelial Cell Models for Drug Screening. Pharmaceutics, 2019, 11, 587.	4.5	20
16	Sex-dependent factors encoded in the immune compartment dictate relapsing or progressive phenotype in demyelinating disease. JCI Insight, 2019, 4, .	5.0	7