Simone M Schoenwaelder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7403521/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Agitation-dependent biomechanical forces modulate GPVI receptor expression and platelet adhesion capacity during storage. Thrombosis Journal, 2022, 20, 3.	2.1	6
2	Microfluidic post method for 3-dimensional modeling of platelet–leukocyte interactions. Analyst, The, 2022, 147, 1222-1235.	3.5	7
3	Development of a carotid artery thrombolysis stroke model in mice. Blood Advances, 2022, 6, 5449-5462.	5.2	3
4	Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood, 2019, 133, 906-918.	1.4	408
5	Compression force sensing regulates integrin αllbβ3 adhesive function on diabetic platelets. Nature Communications, 2018, 9, 1087.	12.8	39
6	Intrinsic apoptosis circumvents the functional decline of circulating platelets but does not cause the storage lesion. Blood, 2018, 132, 197-209.	1.4	19
7	Neutrophil macroaggregates promote widespread pulmonary thrombosis after gut ischemia. Science Translational Medicine, 2017, 9, .	12.4	56
8	Endogenous fibrinolysis facilitates clot retraction in vivo. Blood, 2017, 130, 2453-2462.	1.4	56
9	14-3-3ζ regulates the mitochondrial respiratory reserve linked to platelet phosphatidylserine exposure and procoagulant function. Nature Communications, 2016, 7, 12862.	12.8	49
10	Physicochemical properties that control protein aggregation also determine whether a protein is retained or released from necrotic cells. Open Biology, 2016, 6, 160098.	3.6	7
11	Discovery and antiplatelet activity of a selective PI3KÎ ² inhibitor (MIPS-9922). European Journal of Medicinal Chemistry, 2016, 122, 339-351.	5.5	31
12	MouseMove: an open source program for semi-automated analysis of movement and cognitive testing in rodents. Scientific Reports, 2015, 5, 16171.	3.3	61
13	The class II PI 3-kinase, PI3KC2α, links platelet internal membrane structure to shear-dependent adhesive function. Nature Communications, 2015, 6, 6535.	12.8	67
14	Thrombin-dependent intravascular leukocyte trafficking regulated by fibrin and the platelet receptors GPIb and PAR4. Nature Communications, 2015, 6, 7835.	12.8	64
15	Dok-2 Adaptor Protein Regulates the Shear-dependent Adhesive Function of Platelet Integrin αIIbβ3 in Mice. Journal of Biological Chemistry, 2014, 289, 5051-5060.	3.4	12
16	The CXCR1/2 ligand NAP-2 promotes directed intravascular leukocyte migration through platelet thrombi. Blood, 2013, 121, 4555-4566.	1.4	113
17	Low adhesion receptor levels on circulating platelets in patients with lymphoproliferative diseases before receiving Navitoclax (ABT-263). Blood, 2013, 121, 1479-1481.	1.4	20
18	Bcl-xL–inhibitory BH3 mimetics (ABT-737 or ABT-263) and the modulation of cytosolic calcium flux and platelet function. Blood, 2012, 119, 1320-1321.	1.4	28

#	Article	IF	CITATIONS
19	Caspase-9 mediates the apoptotic death of megakaryocytes and platelets, but is dispensable for their generation and function. Blood, 2012, 119, 4283-4290.	1.4	70
20	A Live Cell Micro-imaging Technique to Examine Platelet Calcium Signaling Dynamics Under Blood Flow. Methods in Molecular Biology, 2012, 788, 73-89.	0.9	9
21	Phosphatidylinositol(4,5)bisphosphate coordinates actin-mediated mobilization and translocation of secretory vesicles to the plasma membrane of chromaffin cells. Nature Communications, 2011, 2, 491.	12.8	72
22	Bcl-xL–inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood, 2011, 118, 1663-1674.	1.4	262
23	The catalytic class IA PI3K isoforms play divergent roles in breast cancer cell migration. Cellular Signalling, 2011, 23, 529-541.	3.6	10
24	A Sensitized RNA Interference Screen Identifies a Novel Role for the PI3K p110γ Isoform in Medulloblastoma Cell Proliferation and Chemoresistance. Molecular Cancer Research, 2011, 9, 925-935.	3.4	56
25	Role of phosphoinositide 3-kinase β in platelet aggregation and thromboxane A2 generation mediated by Gi signalling pathways. Biochemical Journal, 2010, 429, 369-377.	3.7	87
26	Procoagulant platelets: are they necrotic?. Blood, 2010, 116, 2011-2018.	1.4	138
27	Phosphoinositide 3-Kinase p110β Regulates Integrin αIlbβ3 Avidity and the Cellular Transmission of Contractile Forces. Journal of Biological Chemistry, 2010, 285, 2886-2896.	3.4	69
28	Pl 3-Kinase p110β Regulation of Platelet Integrin αIIbβ3. Current Topics in Microbiology and Immunology, 2010, 346, 203-224.	1.1	13
29	Non-redundant Roles of Phosphoinositide 3-Kinase Isoforms α and β in Glycoprotein VI-induced Platelet Signaling and Thrombus Formation. Journal of Biological Chemistry, 2009, 284, 33750-33762.	3.4	110
30	Reconstituted High-Density Lipoprotein Attenuates Platelet Function in Individuals With Type 2 Diabetes Mellitus by Promoting Cholesterol Efflux. Circulation, 2009, 120, 2095-2104.	1.6	167
31	New insights into the haemostatic function of platelets. British Journal of Haematology, 2009, 147, 415-430.	2.5	81
32	Two distinct pathways regulate platelet phosphatidylserine exposure and procoagulant function. Blood, 2009, 114, 663-666.	1.4	274
33	Dual P2Y ₁₂ receptor signaling in thrombinâ€stimulated plateletsâ€f–â€finvolvement of phosphoinositide 3â€kinaseâ€fβ but not l³â€fisoform in Ca ²⁺ â€fmobilization and procoagulant a FEBS Journal, 2008, 275, 371-385.	ctà//tty.	43
34	Overlapping and distinct roles for PI3Kβ and γ isoforms in S1P-induced migration of human and mouse endothelial cells. Cardiovascular Research, 2008, 80, 96-105.	3.8	45
35	Targeting the PI3K p110α Isoform Inhibits Medulloblastoma Proliferation, Chemoresistance, and Migration. Clinical Cancer Research, 2008, 14, 6761-6769.	7.0	73
36	Identification of a fibrin-independent platelet contractile mechanism regulating primary hemostasis and thrombus growth. Blood, 2008, 112, 90-99.	1.4	123

#	Article	IF	CITATIONS
37	Selective inhibition of the platelet phosphoinositide 3-kinase p110l ² as promising new strategy for platelet protection during extracorporeal circulation. Thrombosis and Haemostasis, 2008, 99, 609-615.	3.4	31
38	ldentification of a Unique Co-operative Phosphoinositide 3-Kinase Signaling Mechanism Regulating Integrin αIIbβ3 Adhesive Function in Platelets. Journal of Biological Chemistry, 2007, 282, 28648-28658.	3.4	78
39	Novel role for insulin as an autocrine growth factor for malignant brain tumour cells. Biochemical Journal, 2007, 406, 57-66.	3.7	47
40	Thrombin overcomes the thrombosis defect associated with platelet GPVI/FcRÎ ³ deficiency. Blood, 2006, 107, 4346-4353.	1.4	134
41	A critical role for the transcription factor Scl in platelet production during stress thrombopoiesis. Blood, 2006, 108, 2248-2256.	1.4	36
42	Pl 3-kinase p110β: a new target for antithrombotic therapy. Nature Medicine, 2005, 11, 507-514.	30.7	555
43	Rap1b is required for normal platelet function and hemostasis in mice. Journal of Clinical Investigation, 2005, 115, 680-687.	8.2	266
44	Antiplatelet therapy: in search of the 'magic bullet'. Nature Reviews Drug Discovery, 2003, 2, 775-789.	46.4	178
45	Integrin αIIbβ3-dependent Calcium Signals Regulate Platelet-Fibrinogen Interactions under Flow. Journal of Biological Chemistry, 2003, 278, 34812-34822.	3.4	73
46	RhoA Sustains Integrin αIIbβ3Adhesion Contacts under High Shear. Journal of Biological Chemistry, 2002, 277, 14738-14746.	3.4	59
47	Ephrin-A5 induces rounding, blebbing and de-adhesion of EphA3-expressing 293T and melanoma cells by CrkII and Rho-mediated signalling. Journal of Cell Science, 2002, 115, 1059-1072.	2.0	154
48	Ephrin-A5 induces rounding, blebbing and de-adhesion of EphA3-expressing 293T and melanoma cells by CrkII and Rho-mediated signalling. Journal of Cell Science, 2002, 115, 1059-72.	2.0	128
49	The protein tyrosine phosphatase Shp-2 regulates RhoA activity. Current Biology, 2000, 10, 1523-1526.	3.9	130
50	Evidence for a Calpeptin-sensitive Protein-tyrosine Phosphatase Upstream of the Small GTPase Rho. Journal of Biological Chemistry, 1999, 274, 14359-14367.	3.4	100
51	Bidirectional signaling between the cytoskeleton and integrins. Current Opinion in Cell Biology, 1999, 11, 274-286.	5.4	715
52	Calpain Cleavage of Focal Adhesion Proteins Regulates the Cytoskeletal Attachment of Integrin αIIbβ3 (Platelet Glycoprotein IIb/IIIa) and the Cellular Retraction of Fibrin Clots. Journal of Biological Chemistry, 1997, 272, 1694-1702.	3.4	120
53	Distinct Substrate Specificities and Functional Roles for the 78- and 76-kDa Forms of μ-Calpain in Human Platelets. Journal of Biological Chemistry, 1997, 272, 24876-24884.	3.4	57
54	The Bioactive Phospholipid, Lysophosphatidylcholine, Induces Cellular Effects via G-Protein-dependent Activation of Adenylyl Cyclase. Journal of Biological Chemistry, 1996, 271, 27090-27098.	3.4	83

#	Article	IF	CITATIONS
55	Focal adhesion kinase (pp125FAK) cleavage and regulation by calpain. Biochemical Journal, 1996, 318, 41-47.	3.7	170
56	Role of the platelet integrin glycoprotein IIb-IIIa in intracellular signalling. Thrombosis Research, 1993, 71, 159-168.	1.7	9