Takashi Todaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7403124/publications.pdf Version: 2024-02-01

Τλέλομι Τορλέλ

#	Article	IF	CITATIONS
1	Local Iron Loss Distribution in Iron Cores with a Thermographic Camera. IEEJ Transactions on Fundamentals and Materials, 2021, 141, 398-404.	0.2	Ο
2	Transient-operation phenomena of a magnetic reducer analyzed with the time-stepping FEM. , 2020, , .		0
3	Effect of Heat Treatment Under High Magnetic Field on Crystallographic Orientation and Magnetic Properties of Non-Oriented Electrical Steel Sheets. IEEE Transactions on Magnetics, 2019, 55, 1-5.	2.1	0
4	Development of a New Stator Module Type Vernier Motor utilizing Amorphous Cut Core. , 2018, , .		3
5	Transient-Operation Properties of a Magnetic Reducer Analyzed with FEM Considering Time-Stepping Motion Equations. , 2018, , .		Ο
6	Effects of Heat Treatment Under Strong Magnetic Field of 1 T or More on Magnetic Properties of Non-Oriented Electrical Steel Sheet. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	3
7	Effect of Magnetic Annealing on Magnetic Characteristic of Amorphous Wound Core. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	2
8	Effects of Magnetic Field Applied During Heat Treatment on Magnetic Properties of Non-Oriented Electrical Steel Sheets. Journal of the Magnetics Society of Japan, 2018, 42, 83-89.	0.9	2
9	Six pole type hybrid magnetic bearing for turbo-machinery. Mechanical Engineering Journal, 2017, 4, 16-00579-16-00579.	0.4	Ο
10	Magnetic Properties of Bilayer Ferromagnetic Shape Memory Ribbons. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	3
11	Complex-Variable Vector Magnetic Characteristic Analysis Considering Residual Stress Effect. IEEE Transactions on Magnetics, 2014, 50, 337-340.	2.1	Ο
12	Comparison of Iron Loss Characteristics of Divided Cores Considering Vector Magnetic Properties. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	12
13	Design of mover structure of a moving-magnet type linear motor utilizing magnetic-flux concentration-type permanent magnet arrangement. , 2013, , .		0
14	Visualization of Iron Loss Distribution by Thermal Measurement Method. IEEJ Transactions on Fundamentals and Materials, 2013, 133, 217-223.	0.2	1
15	Precise measurement of magnetization characteristics in high pulsed field. Journal of Applied Physics, 2012, 111, 07A712.	2.5	1
16	Vector magnetic properties of Fe-based amorphous sheets under alternating flux condition. Journal of Applied Physics, 2012, 111, 07A327.	2.5	4
17	Vector Magnetic Characteristic Analysis of a PM Motor Considering Residual Stress Distribution With Complex-Approximated Material Modeling. IEEE Transactions on Magnetics, 2012, 48, 3352-3355.	2.1	22
18	Vector Magnetic Characteristic Analysis of a Surface Permanent Magnet Motor by Means of Complex E&S Modeling. IEEE Transactions on Magnetics, 2012, 48, 967-970.	2.1	9

Τακάσηι Τοdaka

#	Article	IF	CITATIONS
19	Loss Evaluation of an Induction Motor Model Core by Vector Magnetic Characteristic Analysis. IEEE Transactions on Magnetics, 2011, 47, 1098-1101.	2.1	15
20	Magnetization Process Simulation of Nd-Fe-B Magnets Taking the Demagnetization Phenomenon Into Account. IEEE Transactions on Magnetics, 2011, 47, 1102-1105.	2.1	9
21	Improvement of Integration-Type Dynamic E&S Modeling. IEEE Transactions on Magnetics, 2011, 47, 1126-1129.	2.1	16
22	Fe–Mn–Si/6.5wt%Si–Fe Bilayer Ribbons Produced by Using the Melt-Spinning Technique. IEEE Transactions on Magnetics, 2011, 47, 3184-3187.	2.1	7
23	Measurement of Vector Magnetic Properties of Fe–Si–B Amorphous Material. IEEE Transactions on Magnetics, 2011, 47, 3188-3191.	2.1	6
24	Attenuation and Reconstruction of Signals in High Pulsed Fields Nd-Fe-B Magnets Characterization. IEEE Transactions on Magnetics, 2011, 47, 3983-3986.	2.1	0
25	Load characteristic analysis of three-phase induction motor considering two-dimensional vector magnetic properties. , 2010, , .		0
26	Numerical modeling of magnetic properties of ferromagnetic shape memory materials depending on temperature and stress. , 2010, , .		0
27	Loss evaluation of an induction motor model core by vector magnetic characteristic analysis. , 2010, ,		0
28	Magnetic characteristic analysis of SPM motor by means of dynamic E&S modeling. , 2010, , .		0
29	Improvement of integral-type dynamic E&S modeling. , 2010, , .		1
30	Magnetization process simulation of Nd-Fe-B magnets taking the demagnetization phenomenon into account. , 2010, , .		0
31	Improvement of rotor structure of concentrated surface permanent magnet synchronous motor. , 2009, , .		3
32	Loss evaluation of an induction motor model core considering two-dimensional vector magnetic properties. , 2009, , .		3
33	Magnet arrangement of magnetic flux concentrating type surface motors. , 2009, , .		0
34	Magnetization Process Simulation of Anisotropic Permanent Magnets by Using the Three-Dimensional VMSW Method. IEEE Transactions on Magnetics, 2008, 44, 858-861.	2.1	4
35	Optimum design of rotating machines using grain-oriented electrical steel sheet by two-dimensional vector magnetic property. , 2007, , .		4
36	Magnetic characteristic analysis of SPM motor with integration-type dynamic E&S modeling. , 2007, , .		0

Τακάς το Το Τάλα

#	Article	IF	CITATIONS
37	Magnetic characteristic analysis of three-phase generator utilizing grain-oriented silicon steel sheets. , 2007, , .		0
38	Measured distributions of two-dimensional magnetic properties in a threephase induction motor model core by using a V-H sensor. , 2007, , .		0
39	The calculation considered two-dimensional vector magnetic properties depending on frequency of transformers. IEEE Transactions on Magnetics, 2006, 42, 687-690.	2.1	11
40	Magnetic characteristic analysis of the motor considering 2-D vector magnetic property. IEEE Transactions on Magnetics, 2006, 42, 615-618.	2.1	27
41	Estimation of the Magnetic Field Strength Waveforms under Distorted Flux Density Conditions. IEEJ Transactions on Fundamentals and Materials, 2006, 126, 127-134.	0.2	4
42	Magnetic Characteristic analysis considering the crystal grain of grain-oriented electrical steel sheet. IEEE Transactions on Magnetics, 2005, 41, 1704-1707.	2.1	9
43	Designing of suitable construction of high-frequency induction heating coil by using finite-element method. IEEE Transactions on Magnetics, 2005, 41, 4048-4050.	2.1	51
44	Improvement of the E&SS Modeling Considering Phase Correction for the Field Analysis Considering Two-Dimensional Vector Magnetic Properties. IEEJ Transactions on Fundamentals and Materials, 2005, 125, 1030-1036.	0.2	1
45	Designing of suitable construction of high-frequency induction coil by using finite element method. , 2005, , .		1
46	Improvement of shape memory effect in Fe-Cr-Co-Ni-Si-Mn ferromagnetic alloy with change of Mn contents. International Journal of Applied Electromagnetics and Mechanics, 2004, 20, 149-154.	0.6	2
47	Measurement of two-dimensional vector magnetic properties on frequency dependence of electrical steel sheet. International Journal of Applied Electromagnetics and Mechanics, 2004, 20, 155-162.	0.6	19
48	A new modeling of the vector magnetic property. IEEE Transactions on Magnetics, 2002, 38, 861-864.	2.1	20
49	Moving simulation of vibration systems using permanent magnets. IEEE Transactions on Magnetics, 2001, 37, 3456-3459.	2.1	3
50	Iron loss and magnetic fields analysis of permanent magnet motors by improved finite element method with E&S model. IEEE Transactions on Magnetics, 2001, 37, 3526-3529.	2.1	9
51	Dynamic magnetic field analysis of electromagnetic suspension element. IEEE Transactions on Magnetics, 1999, 35, 1151-1154.	2.1	3
52	Improvement of a magnetic rotary element for propulsion of a self-running actuator. IEEE Transactions on Magnetics, 1999, 35, 4016-4018.	2.1	3
53	Finite element analysis of high-frequency induction heating problems considering inhomogeneous flow of exciting currents. IEEE Transactions on Magnetics, 1999, 35, 1646-1649.	2.1	5
54	Dynamic finite element analysis of a magnetic damper system. IEEE Transactions on Magnetics, 1999, 35, 3733-3735.	2.1	5

Τακάς Ηι Τοδάκα

#	Article	IF	CITATIONS
55	Finite element analysis of a moving magnetic flux type sensor developed for nondestructive testing. IEEE Transactions on Magnetics, 1999, 35, 1853-1856.	2.1	10
56	Fabrication of a magnetic drive unit for that moves in the same direction of the exciting magnetic field. IEEE Transactions on Magnetics, 1998, 34, 2087-2089.	2.1	7
57	Dynamic finite element analysis of a magnetic hammer with a new composite mesh scheme. IEEE Transactions on Magnetics, 1998, 34, 3339-3342.	2.1	11
58	Numerical approach for ECT by using boundary element method with Laplace transform. IEEE Transactions on Magnetics, 1997, 33, 2135-2138.	2.1	7
59	Numerical simulation of domain structure in magnetic thin sheet. IEEE Transactions on Magnetics, 1996, 32, 1172-1175.	2.1	4
60	Optimal design method with the boundary element for high-frequency quenching coil. IEEE Transactions on Magnetics, 1996, 32, 1262-1265.	2.1	15
61	Experiment and analysis of levitation-melting method of induction furnace. IEEE Transactions on Magnetics, 1995, 31, 4205-4207.	2.1	5
62	Heat conduction and magnetic field analysis of induction heating problems. Elsevier Studies in Applied Electromagnetics in Materials, 1995, 6, 247-250.	0.1	1
63	Flux Distributions In Three-phase Induction Motor In Disconnection Trouble. , 1993, , .		Ο
64	Levitation-melting Apparatijs With Flux Concentration Cap. , 1993, , .		0
65	Properties transformation in Fe-Cr-Co-Ni-Si-Mn ribbon prepared by melt-spinning method. , 0, , .		Ο