Antonio Maggio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/74028/publications.pdf

Version: 2024-02-01

122 papers 4,536 citations

36 h-index 63 g-index

127 all docs

127 docs citations

times ranked

127

3527 citing authors

#	Article	IF	Citations
1	Rapid contraction of giant planets orbiting the 20-million-year-old star V1298 Tau. Nature Astronomy, 2022, 6, 232-240.	10.1	40
2	Extreme-ultraviolet- and X-Ray-driven Photochemistry of Gaseous Exoplanets. Planetary Science Journal, 2022, 3, 1.	3.6	8
3	New Constraints on the Future Evaporation of the Young Exoplanets in the V1298 Tau System. Astrophysical Journal, 2022, 925, 172.	4.5	13
4	The GAPS Programme at TNG. Astronomy and Astrophysics, 2022, 658, A136.	5.1	20
5	X-ray variability of HD 189733 across eight years of <i>XMM-Newton</i> observations. Astronomy and Astrophysics, 2022, 660, A75.	5.1	8
6	The GAPS Programme at TNG. Astronomy and Astrophysics, 2021, 645, A71.	5.1	25
7	The GAPS Programme at TNG. Astronomy and Astrophysics, 2021, 646, A159.	5.1	8
8	Five carbon- and nitrogen-bearing species in a hot giant planet's atmosphere. Nature, 2021, 592, 205-208.	27.8	99
9	The GAPS programme at TNG. Astronomy and Astrophysics, 2021, 649, A29.	5.1	20
10	HADES RV Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2021, 649, A157.	5.1	6
11	Constraints on the mass and on the atmospheric composition and evolution of the low-density young planet DS Tucanae A b. Astronomy and Astrophysics, 2021, 650, A66.	5.1	30
12	HADES RV programme with HARPS-N at TNG. Astronomy and Astrophysics, 2021, 651, A93.	5.1	4
13	The GAPS Programme at TNG. Astronomy and Astrophysics, 2021, 653, A104.	5.1	15
14	Neutral Iron Emission Lines from the Dayside of KELT-9b: The GAPS Program with HARPS-N at TNG XX. Astrophysical Journal Letters, 2020, 894, L27.	8.3	84
15	The GAPS Programme at TNG. Astronomy and Astrophysics, 2020, 638, A5.	5.1	35
16	The GAPS programme at TNG. Astronomy and Astrophysics, 2020, 639, A49.	5.1	47
17	The GAPS programme at TNG. Astronomy and Astrophysics, 2020, 639, A50.	5.1	9
18	The GAPS programme at TNG. Astronomy and Astrophysics, 2020, 641, A68.	5.1	9

#	Article	IF	CITATIONS
19	The GAPS Programme at TNG. Astronomy and Astrophysics, 2020, 642, A133.	5.1	23
20	HADES RV programme with HARPS-N at TNG. Astronomy and Astrophysics, 2020, 644, A68.	5.1	32
21	The GAPS programme at TNG. Astronomy and Astrophysics, 2020, 642, A53.	5.1	4
22	HADES RV program with HARPS-N at the TNG. Astronomy and Astrophysics, 2019, 622, A193.	5.1	21
23	The GAPS Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2019, 631, A34.	5.1	44
24	HADES RV Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2019, 624, A27.	5.1	13
25	The HADES RV programme with HARPS-N at TNG. Astronomy and Astrophysics, 2019, 625, A126.	5.1	12
26	The GAPS Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2019, 621, A110.	5.1	8
27	A chemical survey of exoplanets with ARIEL. Experimental Astronomy, 2018, 46, 135-209.	3.7	249
28	The GAPS Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2018, 616, A155.	5.1	24
29	The GAPS programme with HARPS-N at TNG. Astronomy and Astrophysics, 2018, 613, A41.	5.1	49
30	Eyes on K2-3: A system of three likely sub-Neptunes characterized with HARPS-N and HARPS. Astronomy and Astrophysics, 2018, 615, A69.	5.1	29
31	HADES RV programme with HARPS-N at TNG. Astronomy and Astrophysics, 2018, 612, A89.	5.1	51
32	The GAPS Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2017, 602, A107.	5.1	185
33	HADES RV Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2017, 605, A92.	5.1	27
34	HADES RV Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2017, 598, A26.	5.1	34
35	HADES RV Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2017, 598, A27.	5.1	32
36	HADES RV Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2017, 598, A28.	5.1	28

#	Article	IF	CITATIONS
37	Fifteen years in the high-energy life of the solar-type star HD 81809. Astronomy and Astrophysics, 2017, 605, A19.	5.1	10
38	The GAPS Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2017, 606, A51.	5.1	6
39	The GAPS Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2017, 599, A90.	5.1	9
40	The GAPS Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2017, 601, A53.	5.1	41
41	The GAPS programme with HARPS-N at TNG. Astronomy and Astrophysics, 2016, 588, A118.	5.1	76
42	Star-Planet Interaction: The Curious Case of the Planet Spoon-feeding Its Host Star (and Other) Tj ETQq0 0 0 rgBT	/8.yerlock	10 Tf 50 54
43	Stellar parameters of early-M dwarfs from ratios of spectral features at optical wavelengths. Astronomy and Astrophysics, 2015, 577, A132.	5.1	60
44	The GAPS programme with HARPS-N at TNG. Astronomy and Astrophysics, 2015, 575, L15.	5.1	14
45	The EChO science case. Experimental Astronomy, 2015, 40, 329-391.	3.7	31
46	The GAPS Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2015, 579, A136.	5.1	43
47	The GAPS programme with HARPS-N at TNG. Astronomy and Astrophysics, 2015, 581, L6.	5.1	16
48	COORDINATED X-RAY AND OPTICAL OBSERVATIONS OF STAR–PLANET INTERACTION IN HD 17156. Astrophysical Journal Letters, 2015, 811, L2.	8.3	58
49	The GAPS programme with HARPS-N at TNG. Astronomy and Astrophysics, 2015, 578, A64.	5.1	52
50	FUV VARIABILITY OF HD 189733. IS THE STAR ACCRETING MATERIAL FROM ITS HOT JUPITER?. Astrophysical Journal, 2015, 805, 52.	4.5	75
51	Using the transit of Venus to probe the upper planetary atmosphere. Nature Communications, 2015, 6, 7563.	12.8	10
52	The GAPS programme with HARPS-N at TNG. Astronomy and Astrophysics, 2014, 567, L6.	5.1	26
53	The magnetosphere of the close accreting PMS binary V4046 Sgr. EPJ Web of Conferences, 2014, 64, 08009.	0.3	2
54	The GAPS Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2014, 564, L13.	5.1	45

#	Article	IF	Citations
55	XIPE: the X-ray imaging polarimetry explorer. Experimental Astronomy, 2013, 36, 523-567.	3.7	103
56	The GAPS programme with HARPS-N at TNG. Astronomy and Astrophysics, 2013, 554, A29.	5.1	29
57	The GAPS programme with HARPS-N at TNG. Astronomy and Astrophysics, 2013, 554, A28.	5.1	103
58	V4046 Sgr: X-rays from accretion shock. Proceedings of the International Astronomical Union, 2013, 9, 46-47.	0.0	0
59	The magnetosphere of the close accreting PMS binary V4046 Sgr AB. Proceedings of the International Astronomical Union, 2013, 9, 44-45.	0.0	1
60	A coordinated optical and X-ray spectroscopic campaign on HD 179949: searching for planet-induced chromospheric and coronal activity. Astronomy and Astrophysics, 2013, 552, A7.	5.1	33
61	THE CLOSE T TAURI BINARY SYSTEM V4046 Sgr: ROTATIONALLY MODULATED X-RAY EMISSION FROM ACCRETION SHOCKS. Astrophysical Journal, 2012, 752, 100.	4.5	31
62	EChO. Experimental Astronomy, 2012, 34, 311-353.	3.7	98
63	Magnetic field, differential rotation and activity of the hot-Jupiter-hosting star HD 179949. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1006-1017.	4.4	89
64	Multiwavelength diagnostics of accretion in an X-ray selected sample of CTTSs. Astronomy and Astrophysics, 2011, 526, A104.	5.1	53
65	Photospheric and coronal abundances in solar-type stars: the peculiar case of ⟨i⟩Ï,, ⟨/i⟩ Bootis. Astronomy and Astrophysics, 2011, 527, A144.	5.1	16
66	GSC 07396-00759 = V4046 Sgr C[D]: A WIDE-SEPARATION COMPANION TO THE CLOSE T TAURI BINARY SYSTEM V4046 Sgr AB. Astrophysical Journal Letters, 2011, 740, L17.	8.3	25
67	The close classical T Tauri binary V4046 Sgr: complex magnetic fields and distributed mass accretion. Monthly Notices of the Royal Astronomical Society, 2011, 417, 1747-1759.	4.4	63
68	The science of EChO. Proceedings of the International Astronomical Union, 2010, 6, 359-370.	0.0	5
69	X-ray emitting MHD accretion shocks in classical T Tauri stars. Astronomy and Astrophysics, 2010, 510, A71.	5.1	62
70	On the observability of T Tauri accretion shocks in the X-ray band. Astronomy and Astrophysics, 2010, 522, A55.	5.1	52
71	Accretion shock on CTTSs and its X-ray emission. , 2009, , .		0
72	Photospheric and coronal abundances of solar-type stars with planets: the case of Ï,, Bootis. Proceedings of the International Astronomical Union, 2009, 5, 436-437.	0.0	0

#	Article	IF	CITATIONS
73	Hydrodynamic Modeling of Accretion Shock on CTTSs. Thirty Years of Astronomical Discovery With UKIRT, 2009, , 607-609.	0.3	1
74	X-ray optical depth diagnostics of T Tauri accretion shocks. Astronomy and Astrophysics, 2009, 507, 939-948.	5.1	25
75	Coronal properties of the EQ Pegasi binary system. Astronomy and Astrophysics, 2008, 491, 859-872.	5.1	23
76	Optical spectroscopy of X-ray sources in the Taurus molecular cloud: discovery of ten new pre-main sequence stars. Astronomy and Astrophysics, 2008, 490, 601-612.	5.1	16
77	X-ray emission from dense plasma in classical T Tauri stars: hydrodynamic modeling of the accretion shock. Astronomy and Astrophysics, 2008, 491, L17-L20.	5.1	53
78	Coronal Abundances in Orion Nebula Cluster Stars. Astrophysical Journal, 2007, 660, 1462-1479.	4.5	49
79	X-ray emission from MP Muscae: an old classical T Tauri star. Astronomy and Astrophysics, 2007, 465, L5-L8.	5.1	78
80	New pre-main sequence candidates in the Taurus-Auriga star forming region. Astronomy and Astrophysics, 2007, 468, 405-412.	5.1	22
81	Coronal abundances of X-ray bright pre-main sequence stars in the Taurus molecular cloud. Astronomy and Astrophysics, 2007, 473, 589-601.	5.1	21
82	XMM-Newton spectroscopy of stars in open clusters and star forming regions. Advances in Space Research, 2006, 38, 1509-1519.	2.6	1
83	XMM-Newton survey of two upper Scorpius regions. Astronomy and Astrophysics, 2006, 459, 199-213.	5.1	10
84	Spectral Indications of Density Variability in the Corona of AD Leonis. Astrophysical Journal, 2005, 622, L57-L60.	4.5	5
85	Multi-phase interstellar clouds in the Vela SNR resolved with XMM-Newton. Advances in Space Research, 2005, 35, 1012-1016.	2.6	0
86	Benchmark Exercises for stellar X-ray Spectroscopy Testing (BEXST)., 2005,,.		0
87	Coronal properties of G-type stars in different evolutionary phases. Astronomy and Astrophysics, 2005, 432, 671-685.	5.1	31
88	Shock-cloud interaction in the Vela SNR observed with XMM-Newton. Astronomy and Astrophysics, 2005, 442, 513-525.	5.1	26
89	XMM-Newton spectroscopy of the metal depleted T Tauri star TWA 5. Astronomy and Astrophysics, 2005, 439, 1149-1158.	5.1	27
90	X-ray spectroscopy of the Hertzsprung-gap giant star 31ÂCom, observed with XMM-Newton. Astronomy and Astrophysics, 2004, 413, 643-655.	5.1	24

#	Article	IF	Citations
91	Shock–cloud interactions in the Vela SNR: preliminary results of an XMM-Newton observation. Advances in Space Research, 2004, 33, 381-385.	2.6	3
92	Highâ€Resolution Xâ€Ray Spectroscopy of the Post–T Tauri Star PZ Telescopii. Astrophysical Journal, 2004, 609, 925-934.	4.5	26
93	Xâ€Ray Spectroscopy of the Unsteady Quiescent Corona of AD Leonis withChandra. Astrophysical Journal, 2004, 613, 548-566.	4.5	21
94	EBIT diagnostics using X-ray spectra of highly ionized Ne. Nuclear Instruments & Methods in Physics Research B, 2003, 205, 244-249.	1.4	6
95	The stellar activity-rotation relationship revisited: Dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs. Astronomy and Astrophysics, 2003, 397, 147-157.	5.1	614
96	On coronal structures and their variability in active stars: The case of Capella observed with Chandra/LETGS. Astronomy and Astrophysics, 2003, 404, 1033-1049.	5.1	26
97	Three years in the coronal life of AB Dor. Astronomy and Astrophysics, 2003, 408, 1087-1102.	5.1	71
98	The XMM-Newton view of stellar coronae: X-ray spectroscopy of the corona of AB Doradus. Astronomy and Astrophysics, 2001, 365, L336-L343.	5.1	101
99	Subphotospheric convection and magnetic activity dependence on metallicity and age: Models and tests. Astronomy and Astrophysics, 2001, 373, 597-607.	5.1	15
100	On Stellar Coronae and Solar Active Regions. Astrophysical Journal, 2000, 545, 1074-1083.	4.5	79
101	The Coronae of AD Leo and EV Lac. , 2000, , 248-255.		0
102	X-Ray spectroscopy of stellar coronae with BeppoSAX. Advances in Space Research, 2000, 25, 517-522.	2.6	5
103	BeppoSAX and ROSAT observations of the supernova remnant RCW86. Nuclear Physics, Section B, Proceedings Supplements, 1999, 69, 92-95.	0.4	0
104	X-ray Spectroscopy of Active Stars with ASCA and BeppoSAX. Astrophysics and Space Science, 1998, 261, 101-104.	1.4	4
105	A Method Based on Wavelet Transforms for Source Detection in Photonâ€counting Detector Images. I. Theory and General Properties. Astrophysical Journal, 1997, 483, 350-369.	4.5	170
106	ROSATPSPC Observation of the Northeast Region of the Vela Supernova Remnant. II. Spectral Analysis with a Nonequilibrium of Ionization Emission Model. Astrophysical Journal, 1997, 481, 872-882.	4.5	8
107	A Method Based on Wavelet Transforms for Source Detection in Photonâ€counting Detector Images. II. Application toROSATPSPC Images. Astrophysical Journal, 1997, 483, 370-389.	4.5	81
108	Statistical Properties of Wavelet Transforms Applied to X-Ray Source Detection., 1997,, 417-418.		1

#	Article	IF	Citations
109	Simulated PSPC spectral fits of coronal X-ray sources. AIP Conference Proceedings, 1994, , .	0.4	O
110	ASAP: A systematic approach to plasma spectral synthesis. Space Science Reviews, 1994, 70, 211-214.	8.1	0
111	The analysis system for astrophysical plasmas (ASAP) of the Osservatorio Astronomico di Palermo. Computer Physics Communications, 1994, 81, 105-119.	7.5	6
112	<title>15-30 arcsec resolution replica x-ray optics for AXAF-S</title> ., 1994,,.		0
113	X-ray emission on hybird stars: ROSAT observations of alpha Trianguli Australis and IOTA Aurigae. Astrophysical Journal, 1994, 431, 402.	4.5	17
114	ROSAT PSPC observation of the northeast region of the VELA supernova remnant. 1: Evidence of thermal structure on a scale of 5 min. Astrophysical Journal, 1994, 437, 209.	4. 5	10
115	ROSAT X-ray observations of late-type evolved stars: On the relationship between coronal temperatures and luminosities. Astrophysical Journal, 1994, 432, 701.	4. 5	3
116	Evolution of Stellar Activity in Early Post-Main-Sequence Phases. International Astronomical Union Colloquium, 1993, 137, 648-650.	0.1	0
117	ROSAT X-Ray Detection of epsilon Taurus: Revisiting the Coronal and Transition Region Emission of the Hyades Giants. Astrophysical Journal, 1993, 416, 204.	4. 5	4
118	X-ray activity as statistical age indicator - The disk G-K giants. Astrophysical Journal, 1992, 388, 171.	4.5	0
119	Einstein Observatory magnitude-limited X-ray survey of late-type giant and supergiant stars. Astrophysical Journal, 1990, 348, 253.	4. 5	56
120	IUE and Einstein survey of late-type giant and supergiant stars and the dividing line. Astrophysical Journal, 1990, 361, 570.	4.5	17
121	Variability analysis in low count rate sources. Astrophysical Journal, 1987, 315, 340.	4.5	20
122	Einstein Observatory survey of X-ray emission from solar-type stars - The late F and G dwarf stars. Astrophysical Journal, 1987, 315, 687.	4.5	77