Andrew J Spiers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7402670/publications.pdf

Version: 2024-02-01

73

all docs

67 5,354 28
papers citations h-index

citations h-index g-index

73 73 6802
docs citations times ranked citing authors

59

#	Article	IF	CITATIONS
1	eDNA Inactivation and Biofilm Inhibition by the PolymericBiocide Polyhexamethylene Guanidine Hydrochloride (PHMG-Cl). International Journal of Molecular Sciences, 2022, 23, 731.	1.8	14
2	Azithromycin possesses biofilm–inhibitory activity and potentiates non-bactericidal colistin methanesulfonate (CMS) and polymyxin B against Klebsiella pneumonia. PLoS ONE, 2022, 17, e0270983.	1.1	6
3	Community biofilm-formation, stratification and productivity in serially-transferred microcosms. FEMS Microbiology Letters, 2021, 367, .	0.7	2
4	Extending an Eco-Evolutionary Understanding of Biofilm-Formation at the Air-Liquid Interface to Community Biofilms. , 2020, , .		1
5	Selection and niche trade-offs in biofilm-forming bacterial communities in experimental microcosms. Access Microbiology, 2020, 2, .	0.2	0
6	Characterisation of surfactant-expressing bacteria and their potential bioremediation properties from hydrocarbon-contaminated and uncontaminated soils. Access Microbiology, 2020, 2, .	0.2	0
7	Three biofilm types produced by a model pseudomonad are differentiated by structural characteristics and fitness advantage. Microbiology (United Kingdom), 2020, 166, 707-716.	0.7	7
8	Priming winter wheat seeds with the bacterial quorum sensing signal N-hexanoyl-L-homoserine lactone (C6-HSL) shows potential to improve plant growth and seed yield. PLoS ONE, 2019, 14, e0209460.	1.1	40
9	Penetrating the air–liquid interface is the key to colonization and wrinkly spreader fitness. Microbiology (United Kingdom), 2019, 165, 1061-1074.	0.7	5
10	Penetration of the air–liquid interface is key to the Wrinkly Spreader success. Access Microbiology, 2019, 1, .	0.2	1
11	Uncovering behavioural diversity amongst high-strength Pseudomonas spp. surfactants at the limit of liquid surface tension reduction. FEMS Microbiology Letters, 2018, 365, .	0.7	2
12	Control of Pore Geometry in Soil Microcosms and Its Effect on the Growth and Spread of Pseudomonas and Bacillus sp Frontiers in Environmental Science, 2018, 6, .	1.5	23
13	Conflicting selection alters the trajectory of molecular evolution in a tripartite bacteria–plasmid–phage interaction. Molecular Ecology, 2017, 26, 2757-2764.	2.0	22
14	Biofilm formation and cellulose expression by Bordetella avium 197N, the causative agent of bordetellosis in birds and an opportunistic respiratory pathogen in humans. Research in Microbiology, 2017, 168, 419-430.	1.0	11
15	Adaptive radiation of Pseudomonas fluorescens SBW25 in experimental microcosms provides an understanding of the evolutionary ecology and molecular biology of A-L interface biofilm formation. FEMS Microbiology Letters, 2017, 364, .	0.7	16
16	Parachuting: a dangerous trend in recreational psychoactive substance delivery. Expert Opinion on Drug Delivery, 2017, 14, 491-498.	2.4	3
17	New Insights into the Effects of Several Environmental Parameters on the Relative Fitness of a Numerically Dominant Class of Evolved Niche Specialist. International Journal of Evolutionary Biology, 2016, 2016, 1-10.	1.0	7
18	Rapid compensatory evolution promotes the survival of conjugative plasmids. Mobile Genetic Elements, 2016, 6, e1179074.	1.8	49

#	Article	IF	Citations
19	Environmentally coâ€occurring mercury resistance plasmids are genetically and phenotypically diverse and confer variable contextâ€dependent fitness effects. Environmental Microbiology, 2015, 17, 5008-5022.	1.8	68
20	Plasmid carriage can limit bacteria–phage coevolution. Biology Letters, 2015, 11, 20150361.	1.0	17
21	The evolution of biofilm-forming Wrinkly Spreaders in static microcosms and drip-fed columns selects for subtle differences in wrinkleality and fitness. FEMS Microbiology Ecology, 2015, 91, .	1.3	14
22	A role for glutathione and its biosynthetic genes in Anopheles gambiae insecticide resistance. Journal of Biotechnology, 2015, 208, S24.	1.9	0
23	Bacteriophages Limit the Existence Conditions for Conjugative Plasmids. MBio, 2015, 6, e00586.	1.8	41
24	Parallel Compensatory Evolution Stabilizes Plasmids across the Parasitism-Mutualism Continuum. Current Biology, 2015, 25, 2034-2039.	1.8	225
25	Predicting the minimum liquid surface tension activity of pseudomonads expressing biosurfactants. Letters in Applied Microbiology, 2015, 60, 37-43.	1.0	13
26	Transparent soil microcosms allow 3D spatial quantification of soil microbiological processes <i>in vivo </i> . Plant Signaling and Behavior, 2014, 9, e970421.	1.2	37
27	A Mechanistic Explanation Linking Adaptive Mutation, Niche Change, and Fitness Advantage for the Wrinkly Spreader. International Journal of Evolutionary Biology, 2014, 2014, 1-10.	1.0	25
28	Quorum-Quenching Activity of the AHL-Lactonase from Bacillus licheniformis DAHB1 Inhibits Vibrio Biofilm Formation In Vitro and Reduces Shrimp Intestinal Colonisation and Mortality. Marine Biotechnology, 2014, 16, 707-715.	1.1	95
29	Getting Wrinkly Spreaders to demonstrate evolution in schools. Trends in Microbiology, 2014, 22, 301-303.	3.5	4
30	Air–liquid interface biofilm formation by psychrotrophic pseudomonads recovered from spoilt meat. Antonie Van Leeuwenhoek, 2013, 103, 251-259.	0.7	42
31	Transparent Soil for Imaging the Rhizosphere. PLoS ONE, 2012, 7, e44276.	1.1	156
32	Surfactants expressed by soil pseudomonads alter local soil-water distribution, suggesting a hydrological role for these compounds. FEMS Microbiology Ecology, 2011, 78, 50-58.	1.3	19
33	Environmental modification and niche construction: developing O2 gradients drive the evolution of the Wrinkly Spreader. ISME Journal, 2011, 5, 665-673.	4.4	45
34	Evolution in a test tube: rise of the Wrinkly Spreaders. Journal of Biological Education, 2011, 45, 54-59.	0.8	20
35	Up-dating the Cholodny method using PET films to sample microbial communities in soil. Biopolymers and Cell, 2011, 27, 199-205.	0.1	7
36	Antagonistic coevolution accelerates molecular evolution. Nature, 2010, 464, 275-278.	13.7	492

#	Article	IF	CITATIONS
37	Characterization of a novel air–liquid interface biofilm of Pseudomonas fluorescens SBW25. Microbiology (United Kingdom), 2009, 155, 1397-1406.	0.7	86
38	Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biology, 2009, 10, R51.	13.9	370
39	The minimum information about a genome sequence (MIGS) specification. Nature Biotechnology, 2008, 26, 541-547.	9.4	1,069
40	Characterizing the regulation of the <i>Pu</i> promoter in <i>Acinetobacter baylyi</i> ADP1. Environmental Microbiology, 2008, 10, 1668-1680.	1.8	27
41	Chapter 4 Microbial Distribution in Soils. Advances in Agronomy, 2008, 100, 81-121.	2.4	166
42	The structure–function relationship of WspR, a Pseudomonas fluorescens response regulator with a GGDEF output domain. Microbiology (United Kingdom), 2007, 153, 980-994.	0.7	115
43	Adaptive Divergence in Experimental Populations of Pseudomonas fluorescens. III. Mutational Origins of Wrinkly Spreader Diversity. Genetics, 2007, 176, 441-453.	1.2	150
44	Sequence-based analysis of pQBR103; a representative of a unique, transfer-proficient mega plasmid resident in the microbial community of sugar beet. ISME Journal, 2007, 1, 331-340.	4.4	50
45	Single-Cell Raman Spectral Profiles of Pseudomonas fluorescens SBW25 Reflects in vitro and in planta Metabolic History. Microbial Ecology, 2007, 53, 414-425.	1.4	41
46	Pseudomonas fluorescens SBW25 Biofilm and Planktonic Cells Have Differentiable Raman Spectral Profiles. Microbial Ecology, 2007, 53, 471-474.	1.4	30
47	The Environmental Plasmid pQBR103 Alters the Single-Cell Raman Spectral Profile of Pseudomonas fluorescens SBW25. Microbial Ecology, 2007, 53, 494-497.	1.4	6
48	Wrinkly-Spreader Fitness in the Two-Dimensional Agar Plate Microcosm: Maladaptation, Compensation and Ecological Success. PLoS ONE, 2007, 2, e740.	1.1	15
49	Consideration of Future Requirements for Raman Microbiology as an Examplar for the Ab Initio Development of Informatics Frameworks for Emergent OMICS Technologies. OMICS A Journal of Integrative Biology, 2006, 10, 238-241.	1.0	2
50	Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environmental Microbiology, 2006, 8, 1997-2011.	1.8	221
51	Adaptive Divergence in Experimental Populations of Pseudomonas fluorescens. II. Role of the GGDEF Regulator WspR in Evolution and Development of the Wrinkly Spreader Phenotype. Genetics, 2006, 173, 515-526.	1.2	104
52	The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity. Microbiology (United Kingdom), 2005, 151, 2829-2839.	0.7	130
53	Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Molecular Microbiology, 2003, 50, 15-27.	1.2	393
54	Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces. Molecular Ecology, 2003, 12, 3109-3121.	2.0	144

#	Article	lF	Citations
55	Adaptive Divergence in Experimental Populations of <i>Pseudomonas fluorescens </i> . I. Genetic and Phenotypic Bases of Wrinkly Spreader Fitness. Genetics, 2002, 161, 33-46.	1.2	257
56	Notes on designing a partial genomic database: The PfSBW25 Encyclopaedia, a sequence database for Pseudomonas fluorescens SBW25. Microbiology (United Kingdom), 2001, 147, 247-249.	0.7	8
57	The causes of Pseudomonas diversity. Microbiology (United Kingdom), 2000, 146, 2345-2350.	0.7	276
58	C-terminal interactions between the XerC and XerD site-specific recombinases. Molecular Microbiology, 1999, 32, 1031-1042.	1.2	21
59	Microbial honours. Trends in Microbiology, 1998, 6, 125.	3.5	O
60	Relating primary structure to function in the Escherichia coli XerD siteâ€specific recombinase. Molecular Microbiology, 1997, 24, 1071-1082.	1.2	17
61	RepFIB: A Basic Replicon of Large Plasmids. Plasmid, 1993, 29, 165-179.	0.4	24
62	Regulatory interactions between RepA, an essential replication protein, and the DNA repeats of RepFIB from plasmid P307. Journal of Bacteriology, 1993, 175, 4016-4024.	1.0	8
63	Expression and regulation of the RepA protein of the RepFIB replicon from plasmid P307. Journal of Bacteriology, 1992, 174, 7533-7541.	1.0	26
64	Nucleotide sequence and replication characteristics of RepFIB, a basic replicon of IncF plasmids. Journal of Bacteriology, 1989, 171, 2697-2707.	1.0	42
65	The genetics of phenotypic innovation. , 0, , 91-104.		4
66	Cellulose Expression in Pseudomonas fluorescens SBW25 and Other Environmental Pseudomonads. , 0, , .		6
67	Viewing Biofilms within the Larger Context of Bacterial Aggregations. , 0, , .		11