John A Juvik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7402313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variation of Glucosinolates in Vegetable Crops of <i>Brassica oleracea</i> . Journal of Agricultural and Food Chemistry, 1999, 47, 1541-1548.	5.2	509
2	Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry, 2004, 65, 1273-1281.	2.9	263
3	Epithiospecifier Protein from Broccoli (Brassica oleraceaL. ssp.italica) Inhibits Formation of the Anticancer Agent Sulforaphane. Journal of Agricultural and Food Chemistry, 2006, 54, 2069-2076.	5.2	201
4	Miscanthus. Advances in Botanical Research, 2010, 56, 75-137.	1.1	169
5	Glucosinolate Profiles in Broccoli: Variation in Levels and Implications in Breeding for Cancer Chemoprotection. Journal of the American Society for Horticultural Science, 2002, 127, 807-813.	1.0	128
6	Genome Size of Three Miscanthus Species. Plant Molecular Biology Reporter, 2009, 27, 184-188.	1.8	97
7	Correlation Analyses of Phytochemical Composition, Chemical, and Cellular Measures of Antioxidant Activity of Broccoli (Brassica oleracea L. Var. italica). Journal of Agricultural and Food Chemistry, 2005, 53, 7421-7431.	5.2	91
8	A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy. BMC Genomics, 2012, 13, 142.	2.8	87
9	Survey of Anthocyanin Composition and Concentration in Diverse Maize Germplasms. Journal of Agricultural and Food Chemistry, 2017, 65, 4341-4350.	5.2	73
10	Relationship of phenolic composition of selected purple maize (Zea mays L.) genotypes with their anti-inflammatory, anti-adipogenic and anti-diabetic potential. Food Chemistry, 2019, 289, 739-750.	8.2	71
11	Genome biology of the paleotetraploid perennial biomass crop Miscanthus. Nature Communications, 2020, 11, 5442.	12.8	67
12	Genetic variation in <i><scp>M</scp>iscanthusÂ×Âgiganteus</i> and the importance of estimating genetic distance thresholds for differentiating clones. GCB Bioenergy, 2015, 7, 386-404.	5.6	62
13	Methyl Jasmonate and 1-Methylcyclopropene Treatment Effects on Quinone Reductase Inducing Activity and Post-Harvest Quality of Broccoli. PLoS ONE, 2013, 8, e77127.	2.5	56
14	A natural colorant system from corn: Flavone-anthocyanin copigmentation for altered hues and improved shelf life. Food Chemistry, 2020, 310, 125734.	8.2	54
15	The Gene Pool of Miscanthus Species and Its Improvement. , 2013, , 73-101.		51
16	Effect of Selenium Fertilization and Methyl Jasmonate Treatment on Glucosinolate Accumulation in Broccoli Florets. Journal of the American Society for Horticultural Science, 2011, 136, 239-246.	1.0	47
17	Plant morphology, genome size, and <scp>SSR</scp> markers differentiate five distinct taxonomic groups among accessions in the genus <i><scp>M</scp>iscanthus</i> . GCB Bioenergy, 2014, 6, 646-660.	5.6	45
18	Environmental Stress and Methyl Jasmonate-mediated Changes in Flavonoid Concentrations and Antioxidant Activity in Broccoli Florets and Kale Leaf Tissues. Hortscience: A Publication of the American Society for Hortcultural Science, 2013, 48, 996-1002.	1.0	40

ЈОНΝ Α **Ј**UVIK

#	Article	IF	CITATIONS
19	Chromosome doubling of the bioenergy crop, <i>Miscanthus</i> × <i>giganteus</i> . GCB Bioenergy, 2009, 1, 404-412.	5.6	39
20	Optimization of methyl jasmonate application to broccoli florets to enhance health-promoting phytochemical content. Journal of the Science of Food and Agriculture, 2014, 94, 2090-2096.	3.5	39
21	Cultivar-Specific Changes in Primary and Secondary Metabolites in Pak Choi (Brassica Rapa, Chinensis) Tj ETQq	1 1 0.7843 4.1	14 rgBT /Ove
22	The Role of Glucosinolate Hydrolysis Products from Brassica Vegetable Consumption in Inducing Antioxidant Activity and Reducing Cancer Incidence. Diseases (Basel, Switzerland), 2016, 4, 22.	2.5	37
23	Profiles of Glucosinolates, Their Hydrolysis Products, and Quinone Reductase Inducing Activity from 39 Arugula (<i>Eruca sativa</i> Mill.) Accessions. Journal of Agricultural and Food Chemistry, 2016, 64, 6524-6532.	5.2	37
24	Mapping the genome of <i>Miscanthus sinensis</i> for <scp>QTL</scp> associated with biomass productivity. GCB Bioenergy, 2015, 7, 797-810.	5.6	34
25	Synthetic polyploid production of <i><scp>M</scp>iscanthus sacchariflorus</i> , <i><scp>M</scp>iscanthus sinensis</i> , and <i><scp>M</scp>iscanthus x giganteus</i> . GCB Bioenergy, 2013, 5, 338-350.	5.6	33
26	Correlation of Quinone Reductase Activity and Allyl Isothiocyanate Formation Among Different Genotypes and Grades of Horseradish Roots. Journal of Agricultural and Food Chemistry, 2015, 63, 2947-2955.	5.2	33
27	Exogenous Methyl Jasmonate Treatment Increases Glucosinolate Biosynthesis and Quinone Reductase Activity in Kale Leaf Tissue. PLoS ONE, 2014, 9, e103407.	2.5	32
28	Variation in chilling tolerance for photosynthesis and leaf extension growth among genotypes related to the C4 grass Miscanthus ×giganteus. Journal of Experimental Botany, 2014, 65, 5267-5278.	4.8	32
29	Prospects for economical natural colorants: insights from maize. Theoretical and Applied Genetics, 2019, 132, 2927-2946.	3.6	32
30	Pre-harvest Methyl Jasmonate Treatment Enhances Cauliflower Chemoprotective Attributes Without a Loss in Postharvest Quality. Plant Foods for Human Nutrition, 2013, 68, 113-117.	3.2	30
31	Transcriptome and Metabolome Analyses of Glucosinolates in Two Broccoli Cultivars Following Jasmonate Treatment for the Induction of Glucosinolate Defense to Trichoplusia ni (Hübner). International Journal of Molecular Sciences, 2016, 17, 1135.	4.1	30
32	Genetic mapping of biomass yield in three interconnected <i>Miscanthus</i> populations. GCB Bioenergy, 2018, 10, 165-185.	5.6	29
33	Influence of Seasonal Variation and Methyl Jasmonate Mediated Induction of Glucosinolate Biosynthesis on Quinone Reductase Activity in Broccoli Florets. Journal of Agricultural and Food Chemistry, 2013, 61, 130930141624005.	5.2	27
34	Linking anthocyanin diversity, hue, and genetics in purple corn. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	27
35	Unique Flavanol-Anthocyanin Condensed Forms in Apache Red Purple Corn. Journal of Agricultural and Food Chemistry, 2018, 66, 10844-10854.	5.2	26
36	Enhancement of Broccoli Indole Glucosinolates by Methyl Jasmonate Treatment and Effects on Prostate Carcinogenesis. Journal of Medicinal Food, 2014, 17, 1177-1182.	1.5	25

ЈОНΝ Α **Ј**UVIK

#	Article	IF	CITATIONS
37	Total Myrosinase Activity Estimates in Brassica Vegetable Produce. Journal of Agricultural and Food Chemistry, 2014, 62, 8094-8100.	5.2	23
38	Discovery of Anthocyanin Acyltransferase1 (AAT1) in Maize Using Genotyping-by-Sequencing (GBS). G3: Genes, Genomes, Genetics, 2018, 8, 3669-3678.	1.8	22
39	Chemopreventive glucosinolate accumulation in various broccoli and collard tissues: Microfluidic-based targeted transcriptomics for by-product valorization. PLoS ONE, 2017, 12, e0185112.	2.5	19
40	Comparison of chemical, color stability, and phenolic composition from pericarp of nine colored corn unique varieties in a beverage model. Food Research International, 2018, 105, 286-297.	6.2	19
41	Highâ€density genetic map of MiscanthusÂsinensis reveals inheritance of zebra stripe. GCB Bioenergy, 2016, 8, 616-630.	5.6	16
42	Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms. Theoretical and Applied Genetics, 2015, 128, 1431-1447.	3.6	14
43	Targeted Metabolomic and Transcriptomic Analyses of "Red Russian―Kale (Brassicae napus var.) Tj ETQq1 1 (Trichoplusia ni Hübner). International Journal of Molecular Sciences, 2018, 19, 1058.	0.784314 4.1	rgBT /Over 14
44	<i>Miscanthus</i> × <i>giganteus</i> plant regeneration: effect of callus types, ages and culture methods on regeneration competence. GCB Bioenergy, 2010, 2, 192-200.	5.6	13
45	A new lab scale corn dry milling protocol generating commercial sized flaking grits for quick estimation of coproduct yield and composition. Industrial Crops and Products, 2017, 109, 92-100.	5.2	12
46	Activating Effects of Phenolics from Apache Red <i>Zea mays</i> L. on Free Fatty Acid Receptor 1 and Glucokinase Evaluated with a Dual Culture System with Epithelial, Pancreatic, and Liver Cells. Journal of Agricultural and Food Chemistry, 2019, 67, 9148-9159.	5.2	12
47	A Polymerase Chain Reaction-based Linkage Map of Broccoli and Identification of Quantitative Trait Loci Associated with Harvest Date and Head Weight. Journal of the American Society for Horticultural Science, 2007, 132, 507-513.	1.0	12
48	Functional Characterization of an Anthocyanin Dimalonyltransferase in Maize. Molecules, 2021, 26, 2020.	3.8	8
49	Characterizing a <i>Miscanthus</i> Germplasm Collection for Yield, Yield Components, and Genotype × Environment Interactions. Crop Science, 2015, 55, 1978-1994.	1.8	7
50	QTL analysis for the identification of candidate genes controlling phenolic compound accumulation in broccoli (Brassica oleracea L. var. italica). Molecular Breeding, 2016, 36, 1.	2.1	7
51	Winter hardiness of <i>Miscanthus</i> (II): Genetic mapping for overwintering ability and adaptation traits in three interconnected <i>Miscanthus</i> populations. GCB Bioenergy, 2019, 11, 706-726.	5.6	7
52	Proposed Method for Estimating Health-Promoting Glucosinolates and Hydrolysis Products in Broccoli (<i>Brassica oleracea</i> var. <i>italica</i>) Using Relative Transcript Abundance. Journal of Agricultural and Food Chemistry, 2017, 65, 301-308.	5.2	6
53	Assessing the diversity of anthocyanin composition in various tissues of purple corn (Zea mays L.). Phytochemistry, 2022, 201, 113263.	2.9	6