
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7402159/publications.pdf Version: 2024-02-01

MIRKO RUNZEI

#	Article	IF	CITATIONS
1	Application of accelerated HSQC experiments to the rapid quantification of monosaccharides and disaccharides in dairy products. Magnetic Resonance in Chemistry, 2022, , .	1.1	4
2	Does the Food Ingredient Pectin Provide a Risk for Patients Allergic to Non-Specific Lipid-Transfer Proteins?. Foods, 2022, 11, 13.	1.9	4
3	Labdanum Resin from Cistus ladanifer L.: A Natural and Sustainable Ingredient for Skin Care Cosmetics with Relevant Cosmeceutical Bioactivities. Plants, 2022, 11, 1477.	1.6	10
4	Nontargeted Analysis of Lipid Extracts Using ¹ H NMR Spectroscopy Combined with Multivariate Statistical Analysis to Discriminate between the Animal Species of Raw and Processed Meat. Journal of Agricultural and Food Chemistry, 2022, 70, 7230-7239.	2.4	4
5	Structural Characterization of Dietary Fiber from Different Lupin Species (<i>Lupinus</i> sp.). Journal of Agricultural and Food Chemistry, 2022, 70, 8430-8440.	2.4	5
6	Zearalenoneâ€malonylâ€glucosides as phase II metabolites in plant cell suspension cultures. Cereal Chemistry, 2021, 98, 175-182.	1.1	4
7	Absorption and metabolism of modified mycotoxins of alternariol, alternariol monomethyl ether, and zearalenone in Cacoâ $\in 2$ cells. Cereal Chemistry, 2021, 98, 109-122.	1.1	8
8	Functionalization of Enzymatically Treated Apple Pomace from Juice Production by Extrusion Processing. Foods, 2021, 10, 485.	1.9	4
9	Extrusion Processing of Pure Chokeberry (Aronia melanocarpa) Pomace: Impact on Dietary Fiber Profile and Bioactive Compounds. Foods, 2021, 10, 518.	1.9	10
10	Defined shear and heat treatment of apple pomace: impact on dietary fiber structures and functional properties. European Food Research and Technology, 2021, 247, 2109-2122.	1.6	6
11	Coffee Silver Skin: Chemical Characterization with Special Consideration of Dietary Fiber and Heat-Induced Contaminants. Foods, 2021, 10, 1705.	1.9	24
12	Structural Profiling of Xyloglucans from Food Plants by High-Performance Anion-Exchange Chromatography with Parallel Pulsed Amperometric and Mass Spectrometric Detection. Journal of Agricultural and Food Chemistry, 2021, 69, 8838-8849.	2.4	11
13	Fatal attraction of Caenorhabditis elegans to predatory fungi through 6-methyl-salicylic acid. Nature Communications, 2021, 12, 5462.	5.8	34
14	Sweet versus grain sorghum: Differential sugar transport and accumulation are linked with vascular bundle architecture. Industrial Crops and Products, 2021, 167, 113550.	2.5	11
15	Characterization of covalent, feruloylated polysaccharide gels by pulsed field gradient-stimulated echo (PFG-STE)-NMR. Carbohydrate Polymers, 2021, 267, 118232.	5.1	8
16	Orange thyme: Phytochemical profiling, in vitro bioactivities of extracts and potential health benefits. Food Chemistry: X, 2021, 12, 100171.	1.8	8
17	Evaluation of the usefulness of serial combination processes for drying of apples. Drying Technology, 2020, 38, 1274-1290.	1.7	9
18	Modification of Apple Pomace by Extrusion Processing: Studies on the Composition, Polymer Structures, and Functional Properties. Foods, 2020, 9, 1385.	1.9	28

#	Article	IF	CITATIONS
19	Mechanical properties and compositional characteristics of beet (Beta vulgaris L.) varieties and their response to nitrogen application. European Food Research and Technology, 2020, 246, 2135-2146.	1.6	10
20	Thymus zygis subsp. zygis an Endemic Portuguese Plant: Phytochemical Profiling, Antioxidant, Anti-Proliferative and Anti-Inflammatory Activities. Antioxidants, 2020, 9, 482.	2.2	34
21	Polyphenol composition and biological activity of Thymus citriodorus and Thymus vulgaris: Comparison with endemic Iberian Thymus species. Food Chemistry, 2020, 331, 127362.	4.2	34
22	Fully Automated Identification of Coffee Species and Simultaneous Quantification of Furfuryl Alcohol Using NMR Spectroscopy. Journal of AOAC INTERNATIONAL, 2020, 103, 306-314.	0.7	22
23	Chemical Characterization and Bioactivity of Extracts from Thymus mastichina: A Thymus with a Distinct Salvianolic Acid Composition. Antioxidants, 2020, 9, 34.	2.2	30
24	Impact of defined thermomechanical treatment on the structure and content of dietary fiber and the stability and bioaccessibility of polyphenols of chokeberry (Aronia melanocarpa) pomace. Food Research International, 2020, 134, 109232.	2.9	26
25	Comparison and Optimization of Different Protein Nitrogen Quantitation and Residual Protein Characterization Methods in Dietary Fiber Preparations. Frontiers in Nutrition, 2019, 6, 127.	1.6	21
26	NMRâ€based differentiation of conventionally from organically produced chicken eggs in Germany. Magnetic Resonance in Chemistry, 2019, 57, 579-588.	1.1	22
27	A stable isotope dilution approach to analyze ferulic acid oligomers in plant cell walls using liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2019, 411, 5047-5062.	1.9	8
28	Characterization of <i>Miscanthus</i> cell wall polymers. GCB Bioenergy, 2019, 11, 191-205.	2.5	38
29	The Human Fecal Microbiota Metabolizes Foodborne Heterocyclic Aromatic Amines by Reuterin Conjugation and Further Transformations. Molecular Nutrition and Food Research, 2019, 63, 1801177.	1.5	15
30	Chemical characterization and bioactive properties of decoctions and hydroethanolic extracts of Thymus carnosus Boiss Journal of Functional Foods, 2018, 43, 154-164.	1.6	37
31	Maturationâ€related changes of carrot lignins. Journal of the Science of Food and Agriculture, 2018, 98, 1016-1023.	1.7	3
32	Characterization of β-glucan formation by Lactobacillus brevis TMW 1.2112 isolated from slimy spoiled beer. International Journal of Biological Macromolecules, 2018, 107, 874-881.	3.6	48
33	Maturation-related modifications of cell wall structures of kohlrabi (Brassica oleracea var.) Tj ETQq1 1 0.78431	4 rgBT /Ove 1.6	erlogk 10 Tf 5
34	Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production. ISME Journal, 2018, 12, 610-622.	4.4	173
35	Characterization of an acetan-like heteropolysaccharide produced by Kozakia baliensis NBRC 16680. International Journal of Biological Macromolecules, 2018, 106, 248-257.	3.6	9
36	Detailed Structural Characterization of Arabinans and Galactans of 14 Apple Cultivars Before and After Cold Storage. Frontiers in Plant Science, 2018, 9, 1451.	1.7	11

1.1

7

#	Article	IF	CITATIONS
37	A Multi-Step Chromatographic Approach to Purify Radically Generated Ferulate Oligomers Reveals Naturally Occurring 5-5/8-8(Cyclic)-, 8-8(Noncyclic)/8-O-4-, and 5-5/8-8(Noncyclic)-Coupled Dehydrotriferulic Acids. Frontiers in Chemistry, 2018, 6, 190.	1.8	7
38	<i>Thymus pulegioides</i> L. as a rich source of antioxidant, anti-proliferative and neuroprotective phenolic compounds. Food and Function, 2018, 9, 3617-3629.	2.1	37
39	Expanding the feruloyl esterase gene family of Aspergillus niger by characterization of a feruloyl esterase, FaeC. New Biotechnology, 2017, 37, 200-209.	2.4	52
40	Storage related changes of cell wall based dietary fiber components of broccoli (Brassica oleracea) Tj ETQq0 0 0 i	rgBT /Ovei 2.9	lock 10 Tf 50
41	Metabolism of Foodborne Heterocyclic Aromatic Amines by <i>Lactobacillus reuteri</i> DSM 20016. Journal of Agricultural and Food Chemistry, 2017, 65, 6797-6811.	2.4	15
42	Automated Multicomponent Analysis of Soft Drinks Using 1D 1H and 2D 1H-1H J-resolved NMR Spectroscopy. Food Analytical Methods, 2017, 10, 827-836.	1.3	30

43	Physiological and Proteomic Analysis of the Rice Mutant cpm2 Suggests a Negative Regulatory Role of Jasmonic Acid in Drought Tolerance. Frontiers in Plant Science, 2017, 8, 1903.	1.7	71
44	Determination of (Total) Phenolics and Antioxidant Capacity in Food and Ingredients. Food Science Text Series, 2017, , 455-468.	0.3	8
45	Glycoside Hydrolase Family 51 αâ€ <scp>l</scp> â€Arabinofuranosidases from <i>Clostridium thermocellum</i> and <i>Cellvibrio japonicus</i> Release <i>O</i> –5â€Feruloylated Arabinose. Cereal Chemistry, 2016, 93, 650-653.	1.1	4
46	NMR Spectroscopic Profiling of Arabinan and Galactan Structural Elements. Journal of Agricultural and Food Chemistry, 2016, 64, 9559-9568.	2.4	16
47	Arabinan and Galactan Oligosaccharide Profiling by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD). Journal of Agricultural and Food Chemistry, 2016, 64, 4656-4664.	2.4	25
48	Heterologous production and characterization of a chlorogenic acid esterase from Ustilago maydis with a potential use in baking. Food Chemistry, 2016, 209, 1-9.	4.2	24
49	Identification of 8-O-4/8-5(Cyclic)- and 8-8(Cyclic)/5-5-Coupled Dehydrotriferulic Acids, Naturally Occurring in Cell Walls of Mono- and Dicotyledonous Plants. Journal of Agricultural and Food Chemistry, 2016, 64, 7244-7250.	2.4	7
50	Characterization of Cell Wall Composition of Radish (<i>Raphanus sativus</i> L. var. <i>sativus</i>) and Maturation Related Changes. Journal of Agricultural and Food Chemistry, 2016, 64, 8625-8632.	2.4	6
51	Sulfoglucosides as Novel Modified Forms of the Mycotoxins Alternariol and Alternariol Monomethyl Ether. Journal of Agricultural and Food Chemistry, 2016, 64, 8892-8901.	2.4	38
52	Development of a QuEChERS-Based Stable-Isotope Dilution LC-MS/MS Method To Quantitate Ferulic Acid and Its Main Microbial and Hepatic Metabolites in Milk. Journal of Agricultural and Food Chemistry, 2016, 64, 8667-8677.	2.4	16
53	Perennial Grain and Oilseed Crops. Annual Review of Plant Biology, 2016, 67, 703-729.	8.6	68

54	Feruloylated Wheat Bran Arabinoxylans: Isolation and Characterization of Acetylated and
94	<i>O</i> –2â€Monosubstituted Structures. Cereal Chemistry, 2016, 93, 493-501.

#	Article	IF	CITATIONS
55	Characterization of Cell Wall Components and Their Modifications during Postharvest Storage of <i>Asparagus officinalis</i> L.: Storage-Related Changes in Dietary Fiber Composition. Journal of Agricultural and Food Chemistry, 2016, 64, 478-486.	2.4	23
56	Conjugation of the Mycotoxins Alternariol and Alternariol Monomethyl Ether in Tobacco Suspension Cells. Journal of Agricultural and Food Chemistry, 2015, 63, 4728-4736.	2.4	50
57	Characterization of diferuloylated pectic polysaccharides from quinoa (Chenopodium quinoa) Tj ETQq1 1 0.7843	14 rgBT /(1.4	Ovgglock 10
58	Isolation and characterization of feruloylated arabinoxylan oligosaccharides from the perennial cereal grain intermediate wheat grass (Thinopyrum intermedium). Carbohydrate Research, 2015, 407, 16-25.	1.1	49
59	Neutral Pectin Side Chains of Amaranth (<i>Amaranthus hypochondriacus</i>) Contain Long, Partially Branched Arabinans and Short Galactans, Both with Terminal Arabinopyranoses. Journal of Agricultural and Food Chemistry, 2015, 63, 707-715.	2.4	18
60	Ferulic Acid Dehydrodimer and Dehydrotrimer Profiles of Distiller's Dried Grains with Solubles from Different Cereal Species. Journal of Agricultural and Food Chemistry, 2015, 63, 2006-2012.	2.4	33
61	A Stable-Isotope Dilution GC-MS Approach for the Analysis of DFRC (Derivatization Followed by) Tj ETQq1 1 0.78 Chemistry, 2015, 63, 2668-2673.	4314 rgB 2.4	Г /Overlock 1 19
62	Characterization of Dietary Fiber Polysaccharides from Dehulled Common Buckwheat (<i>Fagopyrum) Tj ETQq0</i>	0 0 rgBT /0 1.1	Dvgrlock 10 T
63	Structural Transformation of 8–5-Coupled Dehydrodiferulates by Human Intestinal Microbiota. Journal of Agricultural and Food Chemistry, 2015, 63, 7975-7985.	2.4	5
64	Pectic Arabinans in Quinoa Seeds (Chenopodium quinoa Willd.) Are Acylated with p oumaric Acid. Cereal Chemistry, 2015, 92, 401-404.	1.1	4
65	Determination of free diferulic, disinapic and dicoumaric acids in plants and foods. Food Chemistry, 2015, 171, 280-286.	4.2	16
66	Quantitative Profiling of Feruloylated Arabinoxylan Side-Chains from Graminaceous Cell Walls. Frontiers in Plant Science, 2015, 6, 1249.	1.7	42
67	Novel arabinan and galactan oligosaccharides from dicotyledonous plants. Frontiers in Chemistry, 2014, 2, 100.	1.8	41
68	Activityâ€Guided Fractionation to Identify Blue Wheat (UC66049 <i>Triticum aestivum</i> L.) Constituents Capable of Inhibiting In Vitro Starch Digestion. Cereal Chemistry, 2014, 91, 152-158.	1.1	8
69	Nature of Phenolic Compounds in Coffee Melanoidins. Journal of Agricultural and Food Chemistry, 2014, 62, 7843-7853.	2.4	69
70	Dehydrotriferulic and Dehydrodiferulic Acid Profiles of Cereal and Pseudocereal Flours. Cereal Chemistry, 2013, 90, 507-514.	1.1	26
71	Development and Application of a Methodology to Determine Free Ferulic Acid and Ferulic Acid Esterâ€Linked to Different Types of Carbohydrates in Cereal Products. Cereal Chemistry, 2012, 89, 247-254.	1.1	21
72	Influence of Cross-Linked Arabinoxylans on the Postprandial Blood Glucose Response in Rats. Journal of Agricultural and Food Chemistry, 2012, 60, 3847-3852.	2.4	23

#	Article	IF	CITATIONS
73	Antioxidant Activity-Guided Fractionation of Blue Wheat (UC66049 Triticum aestivum L.). Journal of Agricultural and Food Chemistry, 2012, 60, 731-739.	2.4	30
74	Chemical Characterization of Klason Lignin Preparations from Plant-Based Foods. Journal of Agricultural and Food Chemistry, 2011, 59, 12506-12513.	2.4	69
75	Chemistry and occurrence of hydroxycinnamate oligomers. Phytochemistry Reviews, 2010, 9, 47-64.	3.1	115
76	Identification of ferulate oligomers from corn stover. Journal of the Science of Food and Agriculture, 2010, 90, 1802-1810.	1.7	11
77	Separation and Detection of Cell Wall-Bound Ferulic Acid Dehydrodimers and Dehydrotrimers in Cereals and Other Plant Materials by Reversed Phase High-Performance Liquid Chromatography With Ultraviolet Detection. Journal of Agricultural and Food Chemistry, 2010, 58, 8927-8935.	2.4	115
78	Conversion of Dehydrodiferulic Acids by Human Intestinal Microbiota. Journal of Agricultural and Food Chemistry, 2009, 57, 3356-3362.	2.4	48
79	Isolation and characterisation of a coffee melanoidin fraction. Journal of the Science of Food and Agriculture, 2008, 88, 2153-2160.	1.7	56
80	Cross-linking of arabinoxylans via 8-8-coupled diferulates as demonstrated by isolation and identification of diarabinosyl 8-8(cyclic)-dehydrodiferulate from maize bran. Journal of Cereal Science, 2008, 47, 29-40.	1.8	37
81	Peroxidase-Catalyzed Oligomerization of Ferulic Acid Esters. Journal of Agricultural and Food Chemistry, 2008, 56, 10368-10375.	2.4	29
82	Artificial Lignification of Maize Cell Walls Does Not Affect In Vitro Bile Acid Adsorption. Cereal Chemistry, 2008, 85, 14-18.	1.1	10
83	Coffee Dietary Fiber Contents and Structural Characteristics As Influenced by Coffee Type and Technological and Brewing Procedures. Journal of Agricultural and Food Chemistry, 2007, 55, 11027-11034.	2.4	31
84	Dietary Fiber from Coffee Beverage:  Degradation by Human Fecal Microbiota. Journal of Agricultural and Food Chemistry, 2007, 55, 6989-6996.	2.4	81
85	Model studies of lignified fiber fermentation by human fecal microbiota and its impact on heterocyclic aromatic amine adsorption. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 624, 41-48.	0.4	30
86	NMR Characterization of Lignins Isolated from Fruit and Vegetable Insoluble Dietary Fiber. Journal of Agricultural and Food Chemistry, 2006, 54, 8352-8361.	2.4	83
87	Synthesis and identification of 2,5-bis-(4-hydroxy-3-methoxyphenyl)-tetrahydrofuran-3,4-dicarboxylic acid, an unanticipated ferulate 8–8-coupling product acylating cereal plant cell walls. Organic and Biomolecular Chemistry, 2006, 4, 2801-2806.	1.5	25
88	Structural Identification of Dehydrotriferulic and Dehydrotetraferulic Acids Isolated from Insoluble Maize Bran Fiber. Journal of Agricultural and Food Chemistry, 2006, 54, 6409-6418.	2.4	103
89	Influence of Lignification and Feruloylation of Maize Cell Walls on the Adsorption of Heterocyclic Aromatic Amines. Journal of Agricultural and Food Chemistry, 2006, 54, 1860-1867.	2.4	27
90	Isolation and structural identification of complex feruloylated heteroxylan side-chains from maize bran. Phytochemistry, 2006, 67, 1276-1286.	1.4	112

#	Article	IF	CITATIONS
91	Structural elucidation of new ferulic acid-containing phenolic dimers and trimers isolated from maize bran. Tetrahedron Letters, 2005, 46, 5845-5850.	0.7	91

Association of non-starch polysaccharides and ferulic acid in grain amaranth (Amaranthus caudatus) Tj ETQq000 rgBT /Overlock 10 Tf $\frac{1000}{2000}$

93	Isolation and structural identification of diarabinosyl 84-dehydrodiferulate from maize bran insoluble fibre. Phytochemistry, 2005, 66, 113-124.	1.4	60
94	Isolation and structural characterisation of 8?O?4/8?O?4- and 8?8/8?O?4-coupled dehydrotriferulic acids from maize bran. Phytochemistry, 2005, 66, 363-371.	1.4	92
95	Characterization of Dietary Fiber Lignins from Fruits and Vegetables Using the DFRC Method. Journal of Agricultural and Food Chemistry, 2005, 53, 9553-9559.	2.4	67
96	Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochemistry Reviews, 2004, 3, 79-96.	3.1	239
97	Semipreparative isolation of dehydrodiferulic and dehydrotriferulic acids as standard substances from maize bran. Journal of Separation Science, 2004, 27, 1080-1086.	1.3	51
98	Lignins and Ferulateâ^'Coniferyl Alcohol Cross-Coupling Products in Cereal Grains. Journal of Agricultural and Food Chemistry, 2004, 52, 6496-6502.	2.4	108
99	Isolation and identification of a ferulic acid dehydrotrimer from saponified maize bran insoluble fiber. European Food Research and Technology, 2003, 217, 128-133.	1.6	103
100	Sinapate Dehydrodimers and Sinapateâ^'Ferulate Heterodimers in Cereal Dietary Fiber. Journal of Agricultural and Food Chemistry, 2003, 51, 1427-1434.	2.4	99
101	Cell wall hydroxycinnamates in wild rice (Zizania aquatica L.) insoluble dietary fibre. European Food Research and Technology, 2002, 214, 482-488.	1.6	80
102	Diferulates as structural components in soluble and insoluble cereal dietary fibre. Journal of the Science of Food and Agriculture, 2001, 81, 653-660.	1.7	285
103	Identification of 4-O-5â€~-Coupled Diferulic Acid from Insoluble Cereal Fiber. Journal of Agricultural and Food Chemistry, 2000, 48, 3166-3169.	2.4	62
104	TowardÂbioeconomy of a multipurpose cereal: Cell wall chemistry of Sorghum is largely buffered against stem sugar content. Cereal Chemistry, 0, , .	1.1	0
105	Cell type matters: competence for alkaloid metabolism differs in two seed-derived cell strains of Catharanthus roseus. Protoplasma, 0, , .	1.0	1
106	Chemical composition and technofunctional properties of carrot (Daucus carota L.) pomace and potato (Solanum tuberosum L.) pulp as affected by thermomechanical treatment. European Food Research and Technology, 0, , .	1.6	0
107	2D-HSQC-NMR-Based Screening of Feruloylated Side-Chains of Cereal Grain Arabinoxylans. Frontiers in Plant Science, 0, 13, .	1.7	0