Lin Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7401364/publications.pdf

Version: 2024-02-01

218592 243529 2,165 73 26 44 citations h-index g-index papers 73 73 73 3207 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Nanotopography Influences Adhesion, Spreading, and Self-Renewal of Human Embryonic Stem Cells. ACS Nano, 2012, 6, 4094-4103.	7.3	353
2	Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E607-15.	3.3	245
3	Nanowire Substrate-Based Laser Scanning Cytometry for Quantitation of Circulating Tumor Cells. Nano Letters, 2012, 12, 2697-2704.	4.5	123
4	A single-layer permeation barrier for organic light-emitting displays. Applied Physics Letters, 2008, 92, 103309.	1.5	71
5	Co-detection and sequencing of genes and transcripts from the same single cells facilitated by a microfluidics platform. Scientific Reports, 2014, 4, 6485.	1.6	65
6	Applications of 2D-Layered Palladium Diselenide and Its van der Waals Heterostructures in Electronics and Optoelectronics. Nano-Micro Letters, 2021, 13, 143.	14.4	61
7	Ultrasensitive Label-free MiRNA Sensing Based on a Flexible Graphene Field-Effect Transistor without Functionalization. ACS Applied Electronic Materials, 2020, 2, 1090-1098.	2.0	59
8	Ultraflexible amorphous silicon transistors made with a resilient insulator. Applied Physics Letters, 2010, 96, 042111.	1.5	53
9	Interfacing Inorganic Nanowire Arrays and Living Cells for Cellular Function Analysis. Small, 2015, 11, 5600-5610.	5.2	50
10	Mechanoluminescence enhancement of ZnS:Cu,Mn with piezotronic effect induced trap-depth reduction originated from PVDF ferroelectric film. Nano Energy, 2019, 63, 103861.	8.2	50
11	A Facile and Effective Method for Patching Sulfur Vacancies of WS ₂ via Nitrogen Plasma Treatment. Small, 2019, 15, e1901791.	5.2	48
12	Poly- <scp> </scp> -Lysine-Modified Graphene Field-Effect Transistor Biosensors for Ultrasensitive Breast Cancer miRNAs and SARS-CoV-2 RNA Detection. Analytical Chemistry, 2022, 94, 1626-1636.	3.2	48
13	Synthesis of Waferâ€Scale Graphene with Chemical Vapor Deposition for Electronic Device Applications. Advanced Materials Technologies, 2021, 6, 2000744.	3.0	46
14	Attomolar-Level Ultrasensitive and Multiplex microRNA Detection Enabled by a Nanomaterial Locally Assembled Microfluidic Biochip for Cancer Diagnosis. Analytical Chemistry, 2021, 93, 5129-5136.	3.2	44
15	Graphene oxide-graphene Van der Waals heterostructure transistor biosensor for SARS-CoV-2 protein detection. Talanta, 2022, 240, 123197.	2.9	40
16	Rapid and sensitive triple-mode detection of causative SARS-CoV-2 virus specific genes through interaction between genes and nanoparticles. Analytica Chimica Acta, 2021, 1154, 338330.	2.6	37
17	Piezopotential gated two-dimensional InSe field-effect transistor for designing a pressure sensor based on piezotronic effect. Nano Energy, 2020, 70, 104457.	8.2	35
18	Large-area surface-enhanced Raman spectroscopy substrate by hybrid porous GaN with Au/Ag for breast cancer miRNA detection. Applied Surface Science, 2021, 541, 148456.	3.1	35

#	Article	IF	Citations
19	Regulation of stem cell fate using nanostructure-mediated physical signals. Chemical Society Reviews, 2021, 50, 12828-12872.	18.7	35
20	Amorphous silicon thin-film transistors with field-effect mobilities of 2â€,cm2/V s for electrons and 0.1â€,cm2/V s for holes. Applied Physics Letters, 2009, 94, 162105.	1.5	34
21	A rapid and ultrasensitive colorimetric biosensor based on aptamer functionalized Au nanoparticles for detection of saxitoxin. RSC Advances, 2020, 10, 15293-15298.	1.7	33
22	Construction of High Field-Effect Mobility Multilayer MoS2 Field-Effect Transistors with Excellent Stability through Interface Engineering. ACS Applied Electronic Materials, 2020, 2, 2132-2140.	2.0	32
23	Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells. Nucleic Acids Research, 2017, 45, gkx026.	6.5	31
24	Stable InSe transistors with high-field effect mobility for reliable nerve signal sensing. Npj 2D Materials and Applications, 2019, 3 , .	3.9	31
25	Enrichment-Detection Integrated Exosome Profiling Biosensors Promising for Early Diagnosis of Cancer. Analytical Chemistry, 2021, 93, 4697-4706.	3.2	30
26	Properties of a Permeation Barrier Material Deposited from Hexamethyl Disiloxane and Oxygen. Journal of the Electrochemical Society, 2009, 156, H106.	1.3	28
27	Microfluidic chip for multiple detection of miRNA biomarkers in breast cancer based on three-segment hybridization. AIP Advances, 2020, 10, .	0.6	26
28	Ultrasensitive, high-throughput, and rapid simultaneous detection of SARS-CoV-2 antigens and lgG/lgM antibodies within 10Âmin through an immunoassay biochip. Mikrochimica Acta, 2021, 188, 262.	2.5	23
29	Low Lattice Mismatch InSe–Se Vertical Van der Waals Heterostructure for Highâ€performance Transistors via Strong Fermiâ€Level Depinning. Small Methods, 2020, 4, 2000238.	4.6	22
30	Ultrasensitive, high-throughput and multiple cancer biomarkers simultaneous detection in serum based on graphene oxide quantum dots integrated microfluidic biosensing platform. Analytica Chimica Acta, 2021, 1178, 338791.	2.6	22
31	Ultrasensitive Detection of COVID-19 Causative Virus (SARS-CoV-2) Spike Protein Using Laser Induced Graphene Field-Effect Transistor. Molecules, 2021, 26, 6947.	1.7	22
32	Fabrication of a uniform Au nanodot array/monolayer graphene hybrid structure for high-performance surface-enhanced Raman spectroscopy. Journal of Materials Science, 2020, 55, 591-602.	1.7	20
33	A novel anti Candida albicans drug screening system based on high-throughput microfluidic chips. Scientific Reports, 2019, 9, 8087.	1.6	17
34	Lys-AuNPs@MoS ₂ Nanocomposite Self-Assembled Microfluidic Immunoassay Biochip for Ultrasensitive Detection of Multiplex Biomarkers for Cardiovascular Diseases. Analytical Chemistry, 2022, 94, 4720-4728.	3.2	17
35	High Performance Thin Film Transistors With Sputtered In–Al–Zn–O Channel and Different Source/Drain Electrodes. IEEE Electron Device Letters, 2019, 40, 247-250.	2.2	16
36	Tunable nanostructured distributed Bragg reflectors for III-nitride optoelectronic applications. RSC Advances, 2020, 10, 23341-23349.	1.7	15

#	Article	IF	CITATIONS
37	Diffusion of atmospheric gases into barrier-layer sealed organic light emitting diodes. Applied Physics Letters, 2008, 93, 203306.	1.5	14
38	Effect of Hydroxyapatite Nanorods on the Fate of Human Adiposeâ€Derived Stem Cells Assessed In Situ at the Single Cell Level with a Highâ€Throughput, Realâ€Time Microfluidic Chip. Small, 2019, 15, e1905001.	5.2	14
39	Effect of substrate temperature on sputtered indium-aluminum-zinc oxide films and thin film transistors. Journal of Alloys and Compounds, 2019, 791, 773-778.	2.8	14
40	Highâ€Throughput, Living Singleâ€Cell, Multiple Secreted Biomarker Profiling Using Microfluidic Chip and Machine Learning for Tumor Cell Classification. Advanced Healthcare Materials, 2022, 11, e2102800.	3.9	14
41	Nanowire array chips for molecular typing of rare trafficking leukocytes with application to neurodegenerative pathology. Nanoscale, 2014, 6, 6537-6550.	2.8	13
42	Improved performance of InSe field-effect transistors by channel encapsulation. Semiconductor Science and Technology, 2018, 33, 06LT01.	1.0	13
43	Reduction of the ambient effect in multilayer InSe transistors and a strategy toward stable 2D-based optoelectronic applications. Nanoscale, 2020, 12, 18356-18362.	2.8	13
44	Controllable Nanoparticle Aggregation through a Superhydrophobic Laser-Induced Graphene Dynamic System for Surface-Enhanced Raman Scattering Detection. ACS Applied Materials & Samp; Interfaces, 2022, 14, 3504-3514.	4.0	13
45	Laserâ€Induced Graphene Superhydrophobic Surface Transition from Pinning to Rolling for Multiple Applications. Small Methods, 2022, 6, e2200096.	4.6	13
46	Graphene-based field-effect transistors integrated with microfluidic chip for real-time pH monitoring of seawater. Journal of Materials Science: Materials in Electronics, 2020, 31, 15372-15380.	1.1	12
47	Highly efficient UV-Ozone treatment for IAZO active layer to facilitate the low temperature fabrication of high performance thin film transistors. Ceramics International, 2020, 46, 17295-17299.	2.3	12
48	Surface specifically modified NK-92 cells with CD56 antibody conjugated superparamagnetic Fe ₃ O ₄ nanoparticles for magnetic targeting immunotherapy of solid tumors. Nanoscale, 2021, 13, 19109-19122.	2.8	12
49	Aptamer-based signal amplification strategies coupled with microchips for high-sensitivity bioanalytical applications: A review. Analytica Chimica Acta, 2022, 1209, 339893.	2.6	11
50	Large area uniform PtSx synthesis on sapphire substrate for performance improved photodetectors. Applied Materials Today, 2021, 25, 101176.	2.3	10
51	A high-performance microfluidic detection platform to conduct a novel multiple-biomarker panel for ovarian cancer screening. RSC Advances, 2021, 11, 8124-8133.	1.7	10
52	Rapid and Highâ€Throughput SARS oVâ€2 RNA Detection without RNA Extraction and Amplification by Using a Microfluidic Biochip. Chemistry - A European Journal, 2022, 28, .	1.7	9
53	A New Gate Dielectric for Highly Stable Amorphous-Silicon Thin-Film Transistors With $\sin!! hbox\{1.5-cm\}^{2}/hbox\{V\} cdot hbox\{s\}$ \$ Electron Field-Effect Mobility. IEEE Electron Device Letters, 2009, 30, 502-504.	2.2	7
54	Self-Aligned Top-Gate Coplanar a-Si:H Thin-Film Transistors With a \$hbox{SiO}_{2}\$–Silicone Hybrid Gate Dielectric. IEEE Electron Device Letters, 2011, 32, 36-38.	2.2	6

#	Article	IF	CITATIONS
55	A Facile and Sensitive DNA Sensing of Harmful Algal Blooms Based on Graphene Oxide Nanosheets. Marine Biotechnology, 2020, 22, 498-510.	1.1	6
56	A Novel Thermally Evaporated Etching Mask for Low-Damage Dry Etching. IEEE Nanotechnology Magazine, 2017, 16, 290-295.	1.1	5
57	Single-Crystalline, Nanoporous Gallium Nitride Films With Fine Tuning of Pore Size for Stem Cell Engineering. Journal of Nanotechnology in Engineering and Medicine, 2014, 5, 0410041-410049.	0.8	4
58	Mechanical Stress Induces a Transient Suppression of Cytokine Secretion in Astrocytes Assessed at the Singleâ€Cell Level with a Highâ€Throughput Microfluidic Chip. Advanced Healthcare Materials, 2021, 10, e2100698.	3.9	4
59	Structure design of amorphous silicon thin film transistor used as uncooled infrared sensors. Infrared Physics and Technology, 2007, 50, 47-50.	1.3	3
60	61.3: Amorphous Silicon TFT Technology for Rollable OLED Displays. Digest of Technical Papers SID International Symposium, 2010, 41, 917-920.	0.1	3
61	Universal Criterion for Critical Motion of Droplets Adhered on Surfaces with Different Wettability in Laminar Flow. Industrial & Engineering Chemistry Research, 2021, 60, 3397-3410.	1.8	3
62	A novel uncooled a-Si microbolometer for infrared detection. , 2006, , .		2
63	Rapid, amplification-free and high-throughput SARS-CoV-2 RNA detection via a reduced-graphene-oxide based fluorescence assay. Sensors & Diagnostics, 0, , .	1.9	2
64	Unraveling the Mechanobiology Underlying Traumatic Brain Injury with Advanced Technologies and Biomaterials. Advanced Healthcare Materials, 2022, 11 , .	3.9	2
65	A High Performance Uncooled a-Si TFT Infrared Sensor. , 2006, , .		1
66	New Type of Thermal-Isolation Structure Based on PI and OPS Used in Uncooled Infrared Detector. IEEE Sensors Journal, 2008, 8, 354-356.	2.4	1
67	Stem Cell Fate: Effect of Hydroxyapatite Nanorods on the Fate of Human Adiposeâ€Derived Stem Cells Assessed In Situ at the Single Cell Level with a Highâ€₹hroughput, Realâ€₹ime Microfluidic Chip (Small) Tj ETQq1	150278431	.41rgBT /Ove
68	Performanceâ€Enhanced CsPbBr 3 /HfO 2 /Si Heterostructure Optoelectronics through the Tunneling Effect. Advanced Materials Interfaces, 2021, 8, 2100279.	1.9	1
69	New application of polyimide in uncooled a-Si TFT infrared sensors. Microelectronics Journal, 2007, 38, 278-281.	1.1	O
70	Effects of Mechanical Strain on the Electrical Performance of Amorphous Silicon Thin-Film Transistors with a New Gate Dielectric. Materials Research Society Symposia Proceedings, 2009, 1196, 8.	0.1	0
71	17.3: aSi:H Thinfilm Transistors with a New Hybrid Dielectric Highly Stable under Mechanical and Electrical Stress. Digest of Technical Papers SID International Symposium, 2010, 41, 238-240.	0.1	О
72	(Invited) A New Insulator for Thin-Film Transistor Backplanes and for Flexible Passivation Layers. ECS Transactions, 2010, 33, 125-134.	0.3	0

#	Article	IF	CITATIONS
73	Fieldâ€Effect Transistors: A Facile and Effective Method for Patching Sulfur Vacancies of WS ₂ via Nitrogen Plasma Treatment (Small 36/2019). Small, 2019, 15, 1970195.	5.2	0