
Marcello Bitetto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7401243/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A <scp>CO</scp> ₂ â€gas precursor to the <scp>M</scp> arch 2015 <scp>V</scp> illarrica volcano eruption. Geochemistry, Geophysics, Geosystems, 2017, 18, 2120-2132.	2.5	66
2	Tracking Formation of a Lava Lake From Ground and Space: Masaya Volcano (Nicaragua), 2014–2017. Geochemistry, Geophysics, Geosystems, 2018, 19, 496-515.	2.5	52
3	Intense magmatic degassing through the lake of Copahue volcano, 2013–2014. Journal of Geophysical Research: Solid Earth, 2015, 120, 6071-6084.	3.4	50
4	Escalating CO2 degassing at the Pisciarelli fumarolic system, and implications for the ongoing Campi Flegrei unrest. Journal of Volcanology and Geothermal Research, 2019, 384, 151-157.	2.1	43
5	Dynamics of Outgassing and Plume Transport Revealed by Proximal Unmanned Aerial System (UAS) Measurements at VolcAin Villarrica, Chile. Geochemistry, Geophysics, Geosystems, 2019, 20, 730-750.	2.5	41
6	The structure of a hydrothermal system from an integrated geochemical, geophysical, and geological approach: The Ischia Island case study. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	34
7	The sea–air exchange of mercury (Hg) in the marine boundary layer of the Augusta basin (southern) Tj ETQq1 1	0,784314 8.2	· rgBT /Over
8	Spatially resolved SO ₂ flux emissions from Mt Etna. Geophysical Research Letters, 2016, 43, 7511-7519.	4.0	34
9	Ultraviolet Imaging of Volcanic Plumes: A New Paradigm in Volcanology. Geosciences (Switzerland), 2017, 7, 68.	2.2	34
10	Gas mass derived by infrasound and UV cameras: Implications for mass flow rate. Journal of Volcanology and Geothermal Research, 2016, 325, 169-178.	2.1	32
11	Combined ground and aerial measurements resolve vent-specific gas fluxes from a multi-vent volcano. Nature Communications, 2020, 11, 3039.	12.8	27
12	The Magmatic Gas Signature of Pacaya Volcano, With Implications for the Volcanic CO ₂ Flux From Guatemala. Geochemistry, Geophysics, Geosystems, 2018, 19, 667-692.	2.5	26
13	Ground deformation reveals the scale-invariant conduit dynamics driving explosive basaltic eruptions. Nature Communications, 2021, 12, 1683.	12.8	26
14	Volcanic CO ₂ tracks the incubation period of basaltic paroxysms. Science Advances, 2021, 7, eabh0191.	10.3	25
15	Aerial strategies advance volcanic gas measurements at inaccessible, strongly degassing volcanoes. Science Advances, 2020, 6, .	10.3	24
16	Exploring the explosiveâ€effusive transition using permanent ultraviolet cameras. Journal of Geophysical Research: Solid Earth, 2017, 122, 4377-4394.	3.4	22
17	Changes in SO2 Flux Regime at Mt. Etna Captured by Automatically Processed Ultraviolet Camera Data. Remote Sensing, 2019, 11, 1201.	4.0	20
18	Dukono, the predominant source of volcanic degassing in Indonesia, sustained by a depleted Indian-MORB. Bulletin of Volcanology, 2018, 80, 1.	3.0	16

MARCELLO BITETTO

#	Article	IF	CITATIONS
19	Volcanic activity and gas emissions along the South Sandwich Arc. Bulletin of Volcanology, 2021, 83, 1.	3.0	14
20	Insights Into the Mechanisms of Phreatic Eruptions From Continuous High Frequency Volcanic Gas Monitoring: Rincón de la Vieja Volcano, Costa Rica. Frontiers in Earth Science, 2019, 6, .	1.8	12
21	Understanding the SO2 Degassing Budget of Mt Etna's Paroxysms: First Clues From the December 2015 Sequence. Frontiers in Earth Science, 2019, 6, .	1.8	10
22	BVLOS UAS Operations in Highly-Turbulent Volcanic Plumes. Frontiers in Robotics and Al, 2020, 7, 549716.	3.2	10
23	A Novel and Inexpensive Method for Measuring Volcanic Plume Water Fluxes at High Temporal Resolution. Remote Sensing, 2017, 9, 146.	4.0	7
24	Sulfur Degassing From Steamâ€Heated Crater Lakes: El Chichón (Chiapas, Mexico) and VÃŧi (Iceland). Geophysical Research Letters, 2018, 45, 7504-7513.	4.0	7
25	The fumarolic CO2 output from Pico do Fogo volcano (Cape Verde). Italian Journal of Geosciences, 2020, 139, 325-340.	0.8	7
26	Changes in heat released by hydrothermal circulation monitored during an eruptive cycle at Mt. Etna (Italy). Bulletin of Volcanology, 2018, 80, 1.	3.0	5
27	Volcanic Gas Emissions Along the Colombian Arc Segment of the Northern Volcanic Zone (CASâ€NVZ): Implications for volcano monitoring and volatile budget of the Andean Volcanic Belt. Geochemistry, Geophysics, Geosystems, 2019, 20, 5057-5081.	2.5	5
28	The crater lake of Ilamatepec (Santa Ana) volcano, El Salvador: insights into lake gas composition and implications for monitoring. Bulletin of Volcanology, 2019, 81, 1.	3.0	4
29	First simultaneous mercury and major volatiles characterization of atmospheric hydrothermal emissions at the Pisciarelli's fumarolic system (Campi Flegrei, Italy). Journal of Volcanology and Geothermal Research, 2020, 406, 107074.	2.1	4
30	First In-Situ Measurements of Plume Chemistry at Mount Garet Volcano, Island of Gaua (Vanuatu). Applied Sciences (Switzerland), 2020, 10, 7293.	2.5	4
31	Elevated CO2 Emissions during Magmatic-Hydrothermal Degassing at Awu Volcano, Sangihe Arc, Indonesia. Geosciences (Switzerland), 2020, 10, 470.	2.2	2
32	Compositional measurement of gas emissions in the Eastern Carpathians (Romania) using the Multi-GAS instrument: Approach for in situ data gathering at non-volcanic areas. Journal of Geochemical Exploration, 2022, 240, 107051.	3.2	1
33	Reply to Kern, C. The Difficulty of Measuring the Absorption of Scattered Sunlight by H2O and CO2 in Volcanic Plumes: A Comment on Pering, et al. "A Novel and Inexpensive Method for Measuring Volcanic Plume Water Fluxes at High Temporal Resolutionâ€, Remote Sens. 2017, 9, 146. Remote Sensing, 2017, 9, 1040	4.0	0