
Todd Emrick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7400883/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PEG- and Peptide-Grafted Aliphatic Polyesters by Click Chemistry. Journal of the American Chemical Society, 2005, 127, 7404-7410.	13.7	545
2	Self-assembly of nanoparticles at interfaces. Soft Matter, 2007, 3, 1231.	2.7	512
3	Stabilizing Liquid Drops in Nonequilibrium Shapes by the Interfacial Jamming of Nanoparticles. Science, 2013, 342, 460-463.	12.6	344
4	Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures. Nature Materials, 2006, 5, 229-233.	27.5	331
5	Ultrathin Cross-Linked Nanoparticle Membranes. Journal of the American Chemical Society, 2003, 125, 12690-12691.	13.7	267
6	Fulleropyrrolidine interlayers: Tailoring electrodes to raise organic solar cell efficiency. Science, 2014, 346, 441-444.	12.6	266
7	An A2 + B3 Approach to Hyperbranched Aliphatic Polyethers Containing Chain End Epoxy Substituents. Macromolecules, 1999, 32, 6380-6382.	4.8	263
8	Adsorption Energy of Nano- and Microparticles at Liquidâ^'Liquid Interfaces. Langmuir, 2010, 26, 12518-12522.	3.5	244
9	Nanoparticle Assembly at Fluid Interfaces:Â Structure and Dynamics. Langmuir, 2005, 21, 191-194.	3.5	241
10	Understanding Interface Engineering for Highâ€Performance Fullerene/Perovskite Planar Heterojunction Solar Cells. Advanced Energy Materials, 2016, 6, 1501606.	19.5	180
11	Nitroxide-Mediated Radical Polymerization from CdSe Nanoparticles. Chemistry of Materials, 2004, 16, 1240-1243.	6.7	133
12	Reconfigurable Printed Liquids. Advanced Materials, 2018, 30, e1707603.	21.0	132
13	Synthesis and photophysical property of well-defined donor–acceptor diblock copolymer based on regioregular poly(3-hexylthiophene) and fullerene. Journal of Materials Chemistry, 2009, 19, 1483.	6.7	125
14	Synthesis of C60-end capped P3HT and its application for high performance of P3HT/PCBM bulk heterojunction solar cells. Journal of Materials Chemistry, 2010, 20, 3287.	6.7	116
15	High Efficiency Tandem Thin-Perovskite/Polymer Solar Cells with a Graded Recombination Layer. ACS Applied Materials & Interfaces, 2016, 8, 7070-7076.	8.0	111
16	Synthesis and Characterization of CdSe Nanorods Functionalized with Regioregular Poly(3-hexylthiophene). Chemistry of Materials, 2007, 19, 3712-3716.	6.7	110
17	Conjugated Polymer Zwitterions: Efficient Interlayer Materials in Organic Electronics. Accounts of Chemical Research, 2016, 49, 2478-2488.	15.6	109
18	Kinetically Trapped Co-continuous Polymer Morphologies through Intraphase Gelation of Nanoparticles. Nano Letters, 2011, 11, 1997-2003.	9.1	107

#	Article	IF	CITATIONS
19	Finely Tuned Polymer Interlayers Enhance Solar Cell Efficiency. Angewandte Chemie - International Edition, 2015, 54, 11485-11489.	13.8	107
20	Nanoparticle Stripes, Grids, and Ribbons Produced by Flow Coating. Advanced Materials, 2010, 22, 4600-4604.	21.0	105
21	Directly Measuring the Complete Stress–Strain Response of Ultrathin Polymer Films. Macromolecules, 2015, 48, 6534-6540.	4.8	101
22	Underwater Superoleophobic Surfaces Prepared from Polymer Zwitterion/Dopamine Composite Coatings. Advanced Materials Interfaces, 2016, 3, 1500521.	3.7	100
23	The preparation of hyperbranched aromatic and aliphatic polyether epoxies by chloride-catalyzed proton transfer polymerization from ABn and A2 + B3 monomers. Journal of Polymer Science Part A, 2000, 38, 4850-4869.	2.3	98
24	Deoxybenzoin-Based Polyarylates as Halogen-Free Fire-Resistant Polymers. Macromolecules, 2006, 39, 3553-3558.	4.8	96
25	Conjugated Polymeric Zwitterions as Efficient Interlayers in Organic Solar Cells. Advanced Materials, 2013, 25, 6868-6873.	21.0	92
26	Soluble Camptothecin Derivatives Prepared by Click Cycloaddition Chemistry on Functional Aliphatic Polyesters. Bioconjugate Chemistry, 2007, 18, 263-267.	3.6	91
27	PolyMPC–Doxorubicin Prodrugs. Bioconjugate Chemistry, 2012, 23, 1753-1763.	3.6	89
28	Synthesis and Characterization of Halogen-Free Antiflammable Polyphosphonates Containing 4,4â€~-Bishydroxydeoxybenzoin. Macromolecules, 2006, 39, 5974-5975.	4.8	80
29	Understanding the Effect of Polylysine Architecture on DNA Binding Using Molecular Dynamics Simulations. Biomacromolecules, 2011, 12, 3870-3879.	5.4	78
30	Novel Zwitterionic Copolymers with Dihydrolipoic Acid: Synthesis and Preparation of Nonfouling Nanorods. Macromolecules, 2013, 46, 119-127.	4.8	78
31	A Synthesis of PEG- and Phosphorylcholine-Substituted Pyridines To Afford Water-Soluble Ruthenium Benzylidene Metathesis Catalysts. Macromolecules, 2008, 41, 530-532.	4.8	76
32	Aliphatic Polyesters with Pendant Cyclopentene Groups:Â Controlled Synthesis and Conversion to Polyester-graft-PEG Copolymers. Macromolecules, 2004, 37, 5863-5865.	4.8	75
33	Functional polyesters prepared by polymerization of ?-allyl(valerolactone) and its copolymerization with ?-caprolactone and ?-valerolactone. Journal of Polymer Science Part A, 2002, 40, 1983-1990.	2.3	74
34	Disulfide Cross-Linked Phosphorylcholine Micelles for Triggered Release of Camptothecin. Molecular Pharmaceutics, 2013, 10, 2684-2692.	4.6	74
35	Antifouling Electrospun Nanofiber Mats Functionalized with Polymer Zwitterions. ACS Applied Materials & Interfaces, 2016, 8, 27585-27593.	8.0	74
36	Zwitterionic PEG-PC Hydrogels Modulate the Foreign Body Response in a Modulus-Dependent Manner. Biomacromolecules, 2018, 19, 2880-2888.	5.4	74

#	Article	IF	CITATIONS
37	Functionalization of nanoparticles for dispersion in polymers and assembly in fluids. Journal of Polymer Science Part A, 2006, 44, 5076-5086.	2.3	73
38	Functional Choline Phosphate Polymers. Journal of the American Chemical Society, 2016, 138, 1828-1831.	13.7	73
39	Multicompartment and multigeometry nanoparticle assembly. Soft Matter, 2011, 7, 2500.	2.7	72
40	Bisphenol-1,2,3-triazole (BPT) Epoxies and Cyanate Esters: Synthesis and Self-Catalyzed Curing. Macromolecules, 2011, 44, 5693-5700.	4.8	70
41	Polymeric Phosphorylcholineâ^'Camptothecin Conjugates Prepared by Controlled Free Radical Polymerization and Click Chemistry. Bioconjugate Chemistry, 2009, 20, 2331-2341.	3.6	66
42	Poly(sulfobetaine methacrylate)s as Electrode Modifiers for Inverted Organic Electronics. Journal of the American Chemical Society, 2015, 137, 540-549.	13.7	62
43	Amphiphilic ruthenium benzylidene metathesis catalyst with PEG-substituted pyridine ligands. Journal of Polymer Science Part A, 2005, 43, 5715-5721.	2.3	59
44	Nanocomposite "Superhighways―by Solution Assembly of Semiconductor Nanostructures with Ligandâ€Functionalized Conjugated Polymers. Advanced Materials, 2012, 24, 2254-2258.	21.0	59
45	Macroscopic Nanoparticle Ribbons and Fabrics. Advanced Materials, 2013, 25, 1248-1253.	21.0	59
46	Fouling-resistant ultrafiltration membranes prepared via co-deposition of dopamine/zwitterion composite coatings. Journal of Membrane Science, 2017, 541, 300-311.	8.2	58
47	Characterization of Heterogeneous Polyacrylamide Hydrogels by Tracking of Single Quantum Dots. Macromolecules, 2014, 47, 741-749.	4.8	57
48	Lightâ€Driven Shape Morphing, Assembly, and Motion of Nanocomposite Gel Surfers. Advanced Materials, 2019, 31, e1900932.	21.0	57
49	Probing and repairing damaged surfaces with nanoparticle-containing microcapsules. Nature Nanotechnology, 2012, 7, 87-90.	31.5	56
50	A Polymer Hole Extraction Layer for Inverted Perovskite Solar Cells from Aqueous Solutions. Advanced Energy Materials, 2016, 6, 1600664.	19.5	56
51	Probing Inter- and Intrachain Exciton Coupling in Isolated Poly(3-hexylthiophene) Nanofibers: Effect of Solvation and Regioregularity. Journal of Physical Chemistry Letters, 2012, 3, 1674-1679.	4.6	55
52	Functional Polyolefins Containing Disulfide and Phosphoester Groups: Synthesis and Orthogonal Degradation. Macromolecules, 2014, 47, 1344-1350.	4.8	55
53	Chemical and Morphological Control of Interfacial Selfâ€Doping for Efficient Organic Electronics. Advanced Materials, 2018, 30, e1705976.	21.0	55
54	Reconfiguring polylysine architectures for controlling polyplex binding and non-viral transfection. Biomaterials, 2011, 32, 2432-2444.	11.4	50

#	Article	IF	CITATIONS
55	A TEMPO-mediated ?living? free-radical approach to ABA triblock dendritic linear hybrid copolymers. Journal of Polymer Science Part A, 1999, 37, 3748-3755.	2.3	49
56	Conjugated Thiophene-Containing Polymer Zwitterions: Direct Synthesis and Thin Film Electronic Properties. Macromolecules, 2013, 46, 344-351.	4.8	49
57	Polymer Zwitterions for Stabilization of CsPbBr ₃ Perovskite Nanoparticles and Nanocomposite Films. Angewandte Chemie - International Edition, 2020, 59, 10802-10806.	13.8	49
58	Polymerâ€Nanoparticle Composites: Preparative Methods and Electronically Active Materials. Polymer Reviews, 2007, 47, 155-163.	10.9	48
59	Polymer design to promote low work function surfaces in organic electronics. Progress in Polymer Science, 2020, 103, 101222.	24.7	48
60	Combining Fullerenes and Zwitterions in Non onjugated Polymer Interlayers to Raise Solar Cell Efficiency. Angewandte Chemie - International Edition, 2018, 57, 9675-9678.	13.8	47
61	Effect of Polymer Chemistry on the Linear Viscoelasticity of Complex Coacervates. Macromolecules, 2020, 53, 7851-7864.	4.8	47
62	Stabilization of α-chymotrypsin at air–water interface through surface binding to gold nanoparticle scaffolds. Soft Matter, 2006, 2, 558-560.	2.7	43
63	Deoxybenzoin-based epoxy resins. Polymer, 2009, 50, 767-774.	3.8	42
64	Hyperbranched porphyrins—a rapid synthetic approach to multiporphyrin macromolecules. Chemical Communications, 2000, , 313-314.	4.1	41
65	PC-Polyolefins: Synthesis and Assembly Behavior in Water. Macromolecules, 2009, 42, 3227-3229.	4.8	41
66	Functional aliphatic polyesters and nanoparticles prepared by organocatalysis and orthogonal grafting chemistry. Journal of Polymer Science Part A, 2012, 50, 3517-3529.	2.3	41
67	Demonstration of Feasibility of X-Ray Free Electron Laser Studies of Dynamics of Nanoparticles in Entangled Polymer Melts. Scientific Reports, 2014, 4, 6017.	3.3	41
68	A facile approach to hydrophilic, reverse zwitterionic, choline phosphate polymers. Polymer Chemistry, 2015, 6, 525-530.	3.9	41
69	Bioelectronic protein nanowire sensors for ammonia detection. Nano Research, 2020, 13, 1479-1484.	10.4	41
70	Bis-dendritic polyethylene prepared by ring-opening metathesis polymerization in the presence of bis-dendritic chain transfer agents. Journal of Polymer Science Part A, 2005, 43, 5429-5439.	2.3	40
71	Assembly of Poly(3-hexylthiophene)/CdSe Hybrid Nanowires by Cocrystallization. Macromolecules, 2011, 44, 1768-1770.	4.8	40
72	Polymerâ€mediated gene therapy: Recent advances and merging of delivery techniques. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1598.	6.1	40

#	Article	IF	CITATIONS
73	Poly(arylateâ€phosphonate) copolymers with deoxybenzoin in the backbone: Synthesis, characterization, and thermal properties. Journal of Polymer Science Part A, 2007, 45, 4573-4580.	2.3	39
74	Dual Functional Zwitterionic Fullerene Interlayer for Efficient Inverted Polymer Solar Cells. Advanced Energy Materials, 2015, 5, 1500405.	19.5	39
75	Effect of Nanoparticles on the Electrohydrodynamic Instabilities of Polymer/Nanoparticle Thin Films. Macromolecules, 2008, 41, 2722-2726.	4.8	38
76	Efficacy of PolyMPC–DOX Prodrugs in 4T1 Tumor-Bearing Mice. Molecular Pharmaceutics, 2014, 11, 1715-1720.	4.6	38
77	Pentalysine-Grafted ROMP Polymers for DNA Complexation and Delivery. Biomacromolecules, 2008, 9, 2495-2500.	5.4	37
78	Role of Ionic Functional Groups on Ion Transport at Perovskite Interfaces. Advanced Energy Materials, 2017, 7, 1701235.	19.5	37
79	Conductive Composite Materials Fabricated from Microbially Produced Protein Nanowires. Small, 2018, 14, e1802624.	10.0	37
80	Hyperbranched aromatic epoxies in the design of adhesive materials. Polymer Bulletin, 2000, 45, 1-7.	3.3	36
81	Ferritin–Polymer Conjugates: Grafting Chemistry and Integration into Nanoscale Assemblies. Advanced Functional Materials, 2010, 20, 3603-3612.	14.9	36
82	Highly Stretchable Nanoparticle Helices Through Geometric Asymmetry and Surface Forces. Advanced Materials, 2013, 25, 6703-6708.	21.0	36
83	Halogen-free ultra-high flame retardant polymers through enzyme catalysis. Green Chemistry, 2012, 14, 819.	9.0	35
84	Polymer–Temozolomide Conjugates as Therapeutics for Treating Glioblastoma. Molecular Pharmaceutics, 2018, 15, 5263-5276.	4.6	35
85	Selective Nucleation of Poly(3-hexyl thiophene) Nanofibers on Multilayer Graphene Substrates. ACS Macro Letters, 2015, 4, 483-487.	4.8	34
86	Tetrathiafulvalene-containing polymers for simultaneous non-covalent modification and electronic modulation of MoS ₂ nanomaterials. Chemical Science, 2016, 7, 4698-4705.	7.4	34
87	Pentafluorophenyl Ester-Functionalized Phosphorylcholine Polymers: Preparation of Linear, Two-Arm, and Grafted Polymer–Protein Conjugates. Biomacromolecules, 2012, 13, 2099-2109.	5.4	32
88	Functional polymers for growth and stabilization of CsPbBr ₃ perovskite nanoparticles. Chemical Communications, 2019, 55, 1833-1836.	4.1	32
89	Water Processable Polythiophene Nanowires by Photo-Cross-Linking and Click-Functionalization. Nano Letters, 2015, 15, 5689-5695.	9.1	31
90	Flame resistant electrospun polymer nanofibers from deoxybenzoinâ€based polymers. Journal of Applied Polymer Science, 2009, 111, 301-307.	2.6	30

#	Article	IF	CITATIONS
91	Transition in Dynamics as Nanoparticles Jam at the Liquid/Liquid Interface. Nano Letters, 2017, 17, 6855-6862.	9.1	30
92	Transforming Ionene Polymers into Efficient Cathode Interlayers with Pendent Fullerenes. Angewandte Chemie - International Edition, 2019, 58, 5677-5681.	13.8	30
93	Functional Sulfobetaine Polymers: Synthesis and Salt-Responsive Stabilization of Oil-in-Water Droplets. Macromolecules, 2015, 48, 7843-7850.	4.8	29
94	N-Doped Zwitterionic Fullerenes as Interlayers in Organic and Perovskite Photovoltaic Devices. ACS Energy Letters, 2017, 2, 957-963.	17.4	29
95	Robust Gold Nanoparticle Sheets by Ligand Cross-Linking at the Air–Water Interface. ACS Nano, 2017, 11, 1292-1300.	14.6	28
96	Connecting quantum dots and bionanoparticles in hybrid nanoscale ultra-thin films. Soft Matter, 2009, 5, 1048.	2.7	27
97	Halogen-free, low flammability polyurethanes derived from deoxybenzoin-based monomers. Journal of Materials Chemistry, 2010, 20, 3681.	6.7	27
98	Soluble, Allyl-Functionalized Deoxybenzoin Polymers. Macromolecules, 2017, 50, 3772-3778.	4.8	27
99	Antifouling Stripes Prepared from Clickable Zwitterionic Copolymers. Langmuir, 2017, 33, 7028-7035.	3.5	27
100	Polymer Zwitterions with Phosphonium Cations. Journal of the American Chemical Society, 2021, 143, 6528-6532.	13.7	26
101	High-Performance Perovskite Solar Cells with a Non-doped Small Molecule Hole Transporting Layer. ACS Applied Energy Materials, 2019, 2, 1634-1641.	5.1	25
102	Hydrophilic Conjugated Polymers Prepared by Aqueous Horner–Wadsworth–Emmons Coupling. Macromolecules, 2016, 49, 2526-2532.	4.8	24
103	Perylene Diimide-Based Ionene and Zwitterionic Polymers: Synthesis and Solution Photophysical Properties. Macromolecules, 2017, 50, 7535-7542.	4.8	24
104	Antifouling Ultrafiltration Membranes with Retained Pore Size by Controlled Deposition of Zwitterionic Polymers and Poly(ethylene glycol). Langmuir, 2019, 35, 1872-1881.	3.5	24
105	Morphology-Dependent Electronic Properties in Cross-Linked (P3HT- <i>b</i> -P3MT) Block Copolymer Nanostructures. ACS Nano, 2014, 8, 8344-8349.	14.6	23
106	Multifunctional deoxybenzoin-based epoxies: Synthesis, mechanical properties, and thermal evaluation. Polymer, 2014, 55, 4441-4446.	3.8	23
107	Forming Sticky Droplets from Slippery Polymer Zwitterions. Advanced Materials, 2017, 29, 1702921.	21.0	23
108	Interleukin-27 Gene Delivery for Modifying Malignant Interactions Between Prostate Tumor and Bone. Human Gene Therapy, 2013, 24, 970-981.	2.7	22

#	Article	IF	CITATIONS
109	Polymer–Peptide Delivery Platforms: Effect of Oligopeptide Orientation on Polymer-Based DNA Delivery. Biomacromolecules, 2014, 15, 1328-1336.	5.4	22
110	Nonâ€halogen fire resistant plastics for aircraft interiors. Polymers for Advanced Technologies, 2008, 19, 609-619.	3.2	21
111	Nanoscale assembly into extended and continuous structures and hybrid materials. NPG Asia Materials, 2013, 5, e43-e43.	7.9	21
112	Reactive polymer zwitterions: Sulfonium sulfonates. Journal of Polymer Science Part A, 2017, 55, 83-92.	2.3	21
113	Tuning the energy gap of conjugated polymer zwitterions for efficient interlayers and solar cells. Journal of Polymer Science Part A, 2015, 53, 327-336.	2.3	20
114	Adsorbed Polyzwitterion Copolymer Layers Designed for Protein Repellency and Interfacial Retention. Langmuir, 2017, 33, 13708-13717.	3.5	19
115	Sequential and localized grafting on aliphatic polyester diblock copolymers using alkyne deprotection and click cycloaddition. Journal of Polymer Science Part A, 2009, 47, 7054-7065.	2.3	18
116	Rapid, facile synthesis of conjugated polymer zwitterions in ionic liquids. Chemical Science, 2014, 5, 2368-2373.	7.4	18
117	Fouling-Resistant Hydrogels Prepared by the Swelling-Assisted Infusion and Polymerization of Dopamine. ACS Applied Bio Materials, 2018, 1, 33-41.	4.6	17
118	Electronic Tuning of Monolayer Graphene with Polymeric "Zwitterists― ACS Nano, 2021, 15, 2762-2770.	14.6	17
119	Coupled oscillation and spinning of photothermal particles in Marangoni optical traps. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
120	Coacervation in polyzwitterion-polyelectrolyte systems and their potential applications for gastrointestinal drug delivery platforms. Nature Communications, 2022, 13, 2250.	12.8	17
121	Photopatternable Biodegradable Aliphatic Polyester with Pendent Benzophenone Groups. Biomacromolecules, 2015, 16, 3329-3335.	5.4	16
122	Dispersing Zwitterions into Comb Polymers for Nonviral Transfection: Experiments and Molecular Simulation. Biomacromolecules, 2016, 17, 546-557.	5.4	16
123	Efficient Electron Mobility in an All-Acceptor Napthalenediimide-Bithiazole Polymer Semiconductor with Large Backbone Torsion. ACS Applied Materials & amp; Interfaces, 2018, 10, 40070-40077.	8.0	16
124	Understanding Hole Extraction of Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 56068-56075.	8.0	16
125	Mechanical Restoration of Damaged Polymer Films by "Repairâ€andâ€Go― Advanced Functional Materials, 2016, 26, 857-863.	14.9	15
126	Building Supracolloidal Fibers from Zwitterionâ€ S tabilized Adhesive Emulsions. Advanced Functional Materials. 2018. 28. 1804325.	14.9	15

#	Article	IF	CITATIONS
127	Phosphorylcholineâ€6ubstituted ROMP Polyolefin Coatings Provide Fouling Resistance to Membrane Materials. Macromolecular Materials and Engineering, 2011, 296, 1142-1148.	3.6	14
128	Promoting cell adhesion on slippery phosphorylcholine hydrogel surfaces. Journal of Materials Chemistry B, 2014, 2, 620-624.	5.8	14
129	Versatile Synthesis of Polymer-Temozolomide Conjugates. ACS Macro Letters, 2017, 6, 215-218.	4.8	14
130	Mitochondrial mechanisms of neuronal rescue by F-68, a hydrophilic Pluronic block co-polymer, following acute substrate deprivation. Neurochemistry International, 2017, 109, 126-140.	3.8	14
131	Polymer Zwitterions for Stabilization of CsPbBr ₃ Perovskite Nanoparticles and Nanocomposite Films. Angewandte Chemie, 2020, 132, 10894-10898.	2.0	14
132	Reconfiguration and Reorganization of Bottlebrush Polymer Surfactants. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
133	Stretching of assembled nanoparticle helical springs. Physical Chemistry Chemical Physics, 2014, 16, 10261.	2.8	13
134	Pentafluorophenyl Ester-Functionalized Nanoparticles as a Versatile Platform for Selective and Covalent Inter-nanoparticle Coupling. ACS Applied Materials & Interfaces, 2016, 8, 2393-2398.	8.0	13
135	Ligand-Mediated Targeting of Cytokine Interleukin-27 Enhances Its Bioactivity InÂVivo. Molecular Therapy - Methods and Clinical Development, 2020, 17, 739-751.	4.1	13
136	Examination of zwitterionic polymers and gels subjected to mechanical constraints. Polymer, 2013, 54, 2887-2894.	3.8	12
137	Evaluation of PolyMPC–Dox Prodrugs in a Human Ovarian Tumor Model. Molecular Pharmaceutics, 2016, 13, 1679-1687.	4.6	12
138	Chemical Stabilization of Perovskite Solar Cells with Functional Fulleropyrrolidines. ACS Central Science, 2018, 4, 216-222.	11.3	12
139	Polymerâ 'Protein Conjugation in Ionic Liquids. Macromolecules, 2010, 43, 6261-6263.	4.8	11
140	Solventâ€Assisted Orientation of Poly(3â€hexylthiophene)â€Functionalized CdSe Nanorods Under an Electric Field. Macromolecular Chemistry and Physics, 2014, 215, 1647-1653.	2.2	11
141	Functional droplets that recognize, collect, and transport debris on surfaces. Science Advances, 2016, 2, e1601462.	10.3	11
142	Mesoscale Block Copolymers. Advanced Materials, 2018, 30, e1706118.	21.0	11
143	Tailoring Biomimetic Phosphorylcholine-Containing Block Copolymers as Membrane-Targeting Cellular Rescue Agents. Biomacromolecules, 2019, 20, 3385-3391.	5.4	11
144	Ring-Opening Polymerization of Allyl-Functionalized Lactams. Macromolecules, 2019, 52, 167-175.	4.8	11

#	Article	IF	CITATIONS
145	Strategies in Aliphatic Polyester Synthesis for Biomaterial and Drug Delivery Applications. ACS Symposium Series, 2006, , 248-266.	0.5	10
146	The Structural Origin of Electron Injection Enhancements with Fulleropyrrolidine Interlayers. Advanced Materials Interfaces, 2016, 3, 1500852.	3.7	10
147	Electron injection and interfacial trap passivation in solution-processed organic light-emitting diodes using a polymer zwitterion interlayer. Organic Electronics, 2017, 50, 384-388.	2.6	10
148	Lithographically Patterned Functional Polymer–Graphene Hybrids for Nanoscale Electronics. ACS Nano, 2018, 12, 1928-1933.	14.6	10
149	Augmenting Glioblastoma Chemotherapy with Polymers. ACS Chemical Neuroscience, 2018, 9, 8-10.	3.5	10
150	Synthetic and Thermal Studies of Bisphenol-C containing Poly(aryletherketone)s. Polymer Bulletin, 2003, 50, 235-242.	3.3	9
151	Amino-fulleropyrrolidines as electrotropic additives to enhance organic photovoltaics. Sustainable Energy and Fuels, 2018, 2, 2143-2147.	4.9	9
152	Fluorinated Polymer Zwitterions: Choline Phosphates and Phosphorylcholines. ACS Macro Letters, 2021, 10, 1204-1209.	4.8	9
153	Freeze-Burn: Fabrication of Porous Carbon Networks via Polymer-Templated Rapid Thermal Annealing. ACS Applied Polymer Materials, 2022, 4, 4329-4338.	4.4	9
154	Picking up Nanoparticles with Functional Droplets. Advanced Materials Interfaces, 2014, 1, 1400121.	3.7	8
155	Photo-sensitive ligands on nanoparticles for achieving triggered emulsion inversion. Journal of Colloid and Interface Science, 2014, 425, 152-158.	9.4	8
156	Chemically Triggered Coalescence and Reactivity of Droplet Fibers. Journal of the American Chemical Society, 2021, 143, 5558-5564.	13.7	8
157	Bithiazolidinylidene polymers: synthesis and electronic interactions with transition metal dichalcogenides. Chemical Science, 2018, 9, 5047-5051.	7.4	7
158	Synthesis of Zwitterionic Pluronic Analogs. Biomacromolecules, 2018, 19, 3377-3389.	5.4	7
159	Designing Branched Deoxybenzoin Polyesters as Polymeric Flame Retardants. Journal of Polymer Science Part A, 2019, 57, 1765-1770.	2.3	7
160	Programmed Wrapping and Assembly of Droplets with Mesoscale Polymers. Advanced Functional Materials, 2020, 30, 2002704.	14.9	7
161	Failure Mechanism of Glassy Polymerâ^'Nanoparticle Composites. Macromolecules, 2007, 40, 6406-6412.	4.8	6
162	Sonodelivery Facilitates Sustained Luciferase Expression from an Episomal Vector in Skeletal Muscle. Materials, 2015, 8, 4608-4617.	2.9	6

#	Article	IF	CITATIONS
163	Combining Fullerenes and Zwitterions in Nonâ€Conjugated Polymer Interlayers to Raise Solar Cell Efficiency. Angewandte Chemie, 2018, 130, 9823-9826.	2.0	6
164	Bidirectional Electronic Tuning of Single-Layer MoS ₂ with Conjugated Organochalcogens. Journal of Physical Chemistry C, 2019, 123, 1506-1511.	3.1	6
165	Selfâ€Propelled Supracolloidal Fibers from Multifunctional Polymer Surfactants and Droplets. Macromolecular Rapid Communications, 2020, 41, e2000334.	3.9	6
166	Solvent-Induced Assembly of Microbial Protein Nanowires into Superstructured Bundles. Biomacromolecules, 2021, 22, 1305-1311.	5.4	6
167	In Situ Hydrolysis of Block Copolymers at the Waterâ€Oil Interface. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
168	Robust polythiophene nanowires cross-linked with functional fullerenes. Journal of Materials Chemistry C, 2014, 2, 9674-9682.	5.5	5
169	Synthesis of waterâ€soluble zwitterionic polysiloxanes. Journal of Polymer Science Part A, 2016, 54, 127-134.	2.3	5
170	Combining Mechanical Fortification and Ultralow Flammability in Epoxy Networks. Macromolecular Materials and Engineering, 2021, 306, 2000567.	3.6	5
171	Assembly of P3HT/CdSe nanowire networks in an insulating polymer host. Soft Matter, 2018, 14, 5327-5332.	2.7	4
172	Transforming Ionene Polymers into Efficient Cathode Interlayers with Pendent Fullerenes. Angewandte Chemie, 2019, 131, 5733-5737.	2.0	4
173	Functional Polymer Zwitterions as Reactive Surfactants for Nanoparticle Capture. ACS Applied Materials & Interfaces, 2021, 13, 21898-21904.	8.0	4
174	Zwitterionic Ammonium Sulfonate Polymers: Synthesis and Properties in Fluids. Macromolecular Rapid Communications, 2022, 43, e2100678.	3.9	4
175	Zwitterionic Block Copolymers for the Synthesis and Stabilization of Perovskite Nanocrystals. Chemistry - A European Journal, 2022, 28, e202200409.	3.3	4
176	Strategies in Aliphatic Polyester Synthesis for Biomaterial and Drug Delivery Applications. ACS Symposium Series, 2012, , 237-254.	0.5	3
177	Simultaneous "Cleanâ€andâ€Repair―of Surfaces Using Smart Droplets. Advanced Functional Materials, 2019, 29, 1805219.	14.9	3
178	Polarization-Driven Asymmetric Electronic Response of Monolayer Graphene to Polymer Zwitterions Probed from Both Sides. ACS Applied Materials & Interfaces, 2021, 13, 47945-47953.	8.0	3
179	High-Performance 1 cm ² Perovskite-Organic Tandem Solar Cells with a Solvent-Resistant and Thickness-Insensitive Interconnecting Layer. ACS Applied Materials & Interfaces, 2022, 14, 29896-29904.	8.0	3
180	Hollow Microcapsules for Drug Delivery by Self-Assembly and Cross-Linking of Amphiphilic Graft Copolymers. ACS Symposium Series, 2006, , 253-267.	0.5	2

#	Article	IF	CITATIONS
181	Reconfiguration and Reorganization of Bottlebrush Polymer Surfactants. Angewandte Chemie, 0, , .	2.0	2

$182 \qquad \text{Smart Droplets: Simultaneous } \widehat{a} \in \widehat{e} Clean \widehat{a} \in \widehat{e} nd \widehat{a} \in \mathbb{R} epair \widehat{a} \in \widehat{e} of Surfaces Using Smart Droplets (Adv. Funct. Mater.) \\ Tj_1 \underbrace{FTO}_1 Q 0 0 0 rgBT / Over a final or for the formula of the for$

183	A TEMPOâ€mediated "living―freeâ€radical approach to ABA triblock dendritic linear hybrid copolymers. Journal of Polymer Science Part A, 1999, 37, 3748-3755.	2.3	1
184	The preparation of hyperbranched aromatic and aliphatic polyether epoxies by chloride atalyzed proton transfer polymerization from ABn and A2 + B3 monomers. Journal of Polymer Science Part A, 2000, 38, 4850-4869.	2.3	1
185	In SituÂHydrolysis of Block Copolymers at the Waterâ€Oil Interface. Angewandte Chemie, 0, , .	2.0	1
186	Stabilization of Three-Particle Excitations in Monolayer MoS ₂ by Fluorinated Methacrylate Polymers. Journal of Physical Chemistry Letters, 2022, 13, 4794-4799.	4.6	1
187	Modification of Blinking Statistics in Solid State Quantum Dot/Conjugated Organic Polymer Composite Nanostructures. Materials Research Society Symposia Proceedings, 2006, 959, 1.	0.1	0
188	Promoting Network Formation in Nanorod-filled Binary Blends. Materials Research Society Symposia Proceedings, 2012, 1411, 75.	0.1	0
189	Organic Photovoltaics: Dual Functional Zwitterionic Fullerene Interlayer for Efficient Inverted Polymer Solar Cells (Adv. Energy Mater. 14/2015). Advanced Energy Materials, 2015, 5, n/a-n/a.	19.5	0
190	Fluorideâ€Catalyzed Deblocking: A Route to Polymeric Urethanes. Angewandte Chemie - International Edition, 2018, 57, 4599-4602.	13.8	0
191	Fluorideâ€Catalyzed Deblocking: A Route to Polymeric Urethanes. Angewandte Chemie, 2018, 130, 4689-4692.	2.0	0