Matthew R Linford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7400818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Definition of a new (Doniachâ€Sunjicâ€Shirley) peak shape for fitting asymmetric signals applied to reduced graphene oxide/graphene oxide XPS spectra. Surface and Interface Analysis, 2022, 54, 67-77.	0.8	25
2	A detailed view of the Gaussian–Lorentzian sum and product functions and their comparison with the Voigt function. Surface and Interface Analysis, 2022, 54, 262-269.	0.8	8
3	Flow-Through Atmospheric Pressure-Atomic Layer Deposition Reactor for Thin-Film Deposition in Capillary Columns. Analytical Chemistry, 2022, 94, 7483-7491.	3.2	6
4	A new holder/container with a porous cover for atomic layer deposition on particles, with transport analysis and detailed characterization of the resulting materials. Surface and Interface Analysis, 2021, 53, 156-166.	0.8	1
5	Spectroscopic ellipsometry of SUâ€8 photoresist from 190 to 1680 nm (0.740–6.50 eV). Surface and Interface Analysis, 2021, 53, 5-13.	0.8	1
6	Practical guides for x-ray photoelectron spectroscopy (XPS): Interpreting the carbon 1s spectrum. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	200
7	A discussion of approaches for fitting asymmetric signals in Xâ€ray photoelectron spectroscopy (XPS), noting the importance of Voigtâ€like peak shapes. Surface and Interface Analysis, 2021, 53, 689-707.	0.8	20
8	Cuttlefish bone (cuttlebone), by near-ambient pressure XPS. Surface Science Spectra, 2021, 28, 014002.	0.3	1
9	Zinc and copper, by high sensitivity-low energy ion scattering. Surface Science Spectra, 2021, 28, .	0.3	4
10	6â€Phenylhexyl silane derivatized, sputtered silicon solid phase microextraction fiber for the partsâ€perâ€ŧrillion detection of polyaromatic hydrocarbons in water and baby formula. Journal of Separation Science, 2021, 44, 2824-2836.	1.3	3
11	Box plots: A simple graphical tool for visualizing overfitting in peak fitting as demonstrated with X-ray photoelectron spectroscopy data. Journal of Electron Spectroscopy and Related Phenomena, 2021, 250, 147094.	0.8	17
12	The Often-Overlooked Power of Summary Statistics in Exploratory Data Analysis: Comparison of Pattern Recognition Entropy (PRE) to Other Summary Statistics and Introduction of Divided Spectrum-PRE (DS-PRE). Journal of Chemical Information and Modeling, 2021, 61, 4173-4189.	2.5	7
13	Evaluation of New, Sputtered Carbon SPME Fibers with a Multi-Functional Group Test Mixture. Separations, 2021, 8, 228.	1.1	1
14	Practical guide for curve fitting in x-ray photoelectron spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	287
15	Roman coin, by near-ambient pressure XPS. Surface Science Spectra, 2020, 27, 014022.	0.3	1
16	Diphenylsiloxane–dimethylsiloxane copolymer: Optical functions from 191 to 1688 nm (0.735–6.491â€% by spectroscopic ellipsometry. Surface Science Spectra, 2020, 27, 026001.	‰еV) 0.3	1
17	Assessment of the frequency and nature of erroneous x-ray photoelectron spectroscopy analyses in the scientific literature. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	105
18	Effects of background gas composition and pressure on 1,4-polymyrcene (and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf	50 67 Td 0.3	(polytetraflu

014005.

#	Article	IF	CITATIONS
19	Polyethylene terephthalate by near-ambient pressure XPS. Surface Science Spectra, 2020, 27, .	0.3	6
20	Substrate protection and deprotection with salt films to prevent surface contamination and enable selective atomic layer deposition. Applied Surface Science, 2020, 526, 146621.	3.1	3
21	Clinoptilolite, a type of zeolite, by near ambient pressure-XPS. Surface Science Spectra, 2020, 27, 014007.	0.3	4
22	Direct Dielectric Barrier Discharge Ionization Promotes Rapid and Simple Lubricant Oil Fingerprinting. Journal of the American Society for Mass Spectrometry, 2020, 31, 1525-1535.	1.2	12
23	Multiâ€instrument characterization of HiPIMS and DC magnetron sputtered tungsten and copper films. Surface and Interface Analysis, 2020, 52, 433-441.	0.8	8
24	Polyethylene glycol: Optical constants from 191 to 1688 nm (0.735–6.491 eV) by spectroscopic ellipsometry. Surface Science Spectra, 2020, 27, .	0.3	9
25	Human hair, untreated, colored, bleached, and/or treated with a conditioner, by near-ambient pressure x-ray photoelectron spectroscopy. Surface Science Spectra, 2020, 27, .	0.3	3
26	Semiempirical Peak Fitting Guided by ab Initio Calculations of X-ray Photoelectron Spectroscopy Narrow Scans of Chemisorbed, Fluorinated Silanes. Langmuir, 2020, 36, 1878-1886.	1.6	10
27	Comprehensive characterisation of ylang-ylang essential oils according to distillation time, origin, and chemical composition using a multivariate approach applied to average mass spectra and segmented average mass spectral data. Journal of Chromatography A, 2020, 1618, 460853.	1.8	7
28	Proliferation of Faulty Materials Data Analysis in the Literature. Microscopy and Microanalysis, 2020, 26, 1-2.	0.2	59
29	Polymethyl methacrylate: Optical properties from 191 to 1688 nm (0.735–6.491 eV) by spectroscopic ellipsometry. Surface Science Spectra, 2020, 27, 016002.	0.3	9
30	Sputtered silicon solid phase microextraction fibers with a polydimethylsiloxane stationary phase with negligible carry-over and phase bleed. Journal of Chromatography A, 2020, 1623, 461065.	1.8	13
31	Versailles Project on Advanced Materials and Standards interlaboratory study on intensity calibration for x-ray photoelectron spectroscopy instruments using low-density polyethylene. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 063208.	0.9	21
32	Zirconium oxide particles, by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, 024001.	0.3	3
33	Liquid water, by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, .	0.3	11
34	Clamshell, by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, 014019.	0.3	6
35	Dimethyl sulfoxide by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, .	0.3	18
36	Carbon dioxide gas, CO2(g), by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, 014022.	0.3	19

#	Article	IF	CITATIONS
37	Bovine serum albumin, aqueous solution, by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, .	0.3	12
38	Polytetrafluoroethylene, by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, 014028.	0.3	9
39	Oxygen gas, O2(g), by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, 014021.	0.3	15
40	Introduction to near-ambient pressure x-ray photoelectron spectroscopy characterization of various materials. Surface Science Spectra, 2019, 26, .	0.3	51
41	Calcite (CaCO3), by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, .	0.3	13
42	Nitrogen gas (N2), by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, 014023.	0.3	16
43	Argon gas, by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, 014024.	0.3	9
44	Water vapor, by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, 014026.	0.3	17
45	Ambient air, by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, 024002.	0.3	8
46	Sesame seeds, by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, 014018.	0.3	6
47	Human tooth, by near-ambient pressure x-ray photoelectron spectroscopy. Surface Science Spectra, 2019, 26, 014016.	0.3	5
48	Differences in surface reactivity in two synthetic routes between HiPIMS and DC magnetron sputtered carbon. Surface and Coatings Technology, 2019, 378, 125003.	2.2	2
49	Coca-Cola, by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, 024005.	0.3	2
50	Poly(l-lactic acid), by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, 024004.	0.3	9
51	Hard Italian cheese, by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, 014015.	0.3	9
52	Kidney stone, by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, 014017.	0.3	4
53	Informatics analysis of capillary electropherograms of autologously doped and undoped blood. Analytical Methods, 2019, 11, 1868-1878.	1.3	3
54	Practical guides for x-ray photoelectron spectroscopy: First steps in planning, conducting, and reporting XPS measurements. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	137

#	Article	IF	CITATIONS
55	Physical and optical properties of the International Simple Glass. Npj Materials Degradation, 2019, 3, .	2.6	37
56	Poly(γ-benzyl l-glutamate), by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, 024010.	0.3	8
57	Calcium fluoride and gold reference by high sensitivity-low energy ion scattering. Surface Science Spectra, 2019, 26, 024201.	0.3	9
58	Ethylene glycol, by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, 024007.	0.3	11
59	Printed and unprinted office paper, by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, 024009.	0.3	2
60	Coffee bean, by near-ambient pressure XPS. Surface Science Spectra, 2019, 26, 024006.	0.3	5
61	Optical function of atomic layer deposited alumina (0.5–41.0 nm) from 191 to 1688 nm by spectrosco ellipsometry with brief literature review. Surface Science Spectra, 2019, 26, 026001.	opic 0.3	10
62	Multidimensional Gas Chromatography in Essential Oil Analysis. Part 2: Application to Characterisation and Identification. Chromatographia, 2019, 82, 399-414.	0.7	22
63	Multidimensional Gas Chromatography in Essential Oil Analysis. PartÂ1: Technical Developments. Chromatographia, 2019, 82, 377-398.	0.7	20
64	Liquid Crystals in Analytical Chemistry: A Review. Critical Reviews in Analytical Chemistry, 2019, 49, 243-255.	1.8	20
65	Using pattern recognition entropy to select mass chromatograms to prepare total ion current chromatograms from raw liquid chromatography–mass spectrometry data. Journal of Chromatography A, 2018, 1558, 21-28.	1.8	10
66	Low energy ion scattering (LEIS) of as-formed and chemically modified display glass and peak-fitting of the Al/Si LEIS peak envelope. Applied Surface Science, 2018, 455, 18-31.	3.1	13
67	The Gaussian-Lorentzian Sum, Product, and Convolution (Voigt) functions in the context of peak fitting X-ray photoelectron spectroscopy (XPS) narrow scans. Applied Surface Science, 2018, 447, 548-553.	3.1	149
68	A perspective on two chemometrics tools: PCA and MCR, and introduction of a new one: Pattern recognition entropy (PRE), as applied to XPS and ToF-SIMS depth profiles of organic and inorganic materials. Applied Surface Science, 2018, 433, 994-1017.	3.1	36
69	Using Cross-Correlation with Pattern Recognition Entropy to Obtain Reduced Total Ion Current Chromatograms from Raw Liquid Chromatography-Mass Spectrometry Data. Bulletin of the Chemical Society of Japan, 2018, 91, 1775-1780.	2.0	6
70	Tutorial on interpreting x-ray photoelectron spectroscopy survey spectra: Questions and answers on spectra from the atomic layer deposition of Al2O3 on silicon. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	0.6	54
71	Polydimethylsiloxane: Optical properties from 191 to 1688 nm (0.735–6.491 eV) of the liquid material spectroscopic ellipsometry. Surface Science Spectra, 2018, 25, 026001.	by 0.3	14
72	Performance Comparison of Three Chemical Vapor Deposited Aminosilanes in Peptide Synthesis: Effects of Silane on Peptide Stability and Purity. Langmuir, 2018, 34, 11925-11932.	1.6	4

#	Article	IF	CITATIONS
73	Reordered (Sorted) Spectra. A Tool for Understanding Pattern Recognition Entropy (PRE) and Spectra in General. Bulletin of the Chemical Society of Japan, 2018, 91, 824-828.	2.0	9
74	Mixed-Mode Liquid Chromatography on Core Shell Stationary Phases based on Layer-By-Layer Nanodiamond/Polyamine Architecture. Current Chromatography, 2018, 5, 5-17.	0.1	4
75	Eagle XG® glass: Optical constants from 196 to 1688 nm (0.735–6.33 eV) by spectroscopic ellipsom Surface Science Spectra, 2017, 24, .	etry. 0.3	8
76	Timeâ€ofâ€flight secondary ion mass spectrometry of wet and dry chemically treated display glass surfaces. Journal of the American Ceramic Society, 2017, 100, 4770-4784.	1.9	15
77	Application of Microextraction Techniques Including SPME and MESI to the Thermal Degradation of Polymers: A Review. Critical Reviews in Analytical Chemistry, 2017, 47, 172-186.	1.8	13
78	Optical constants of SiO2 from 196 to 1688 nm (0.735–6.33 eV) from 20, 40, and 60 nm films of sputtered SiO2 on Eagle XG® glass by spectroscopic ellipsometry. Surface Science Spectra, 2017, 24, .	reactively	5
79	Thin-Film Carbon Nanofuses for Permanent Data Storage. ACS Omega, 2017, 2, 2432-2438.	1.6	1
80	Layerâ€byâ€layer deposition of nitrilotris(methylene)triphosphonic acid and Zr(IV): an XPS, ToFâ€SIMS, ellipsometry, and AFM study. Surface and Interface Analysis, 2016, 48, 105-110.	0.8	2
81	Reevaluating the conventional approach for analyzing spectroscopic ellipsometry psi/delta versus time data. Additional statistical rigor may often be appropriate. Surface and Interface Analysis, 2016, 48, 186-195.	0.8	1
82	Polyallylamine as an Adhesion Promoter for SU-8 Photoresist. Microscopy and Microanalysis, 2016, 22, 964-970.	0.2	14
83	Eagle XG® glass, optical constants from 230 to 1690 nm (0.73 - 5.39 eV) by spectroscopic ellipsometry Surface Science Spectra, 2016, 23, 55-60.		16
84	Low energy ion scattering (LEIS). A practical introduction to its theory, instrumentation, and applications. Analytical Methods, 2016, 8, 3419-3439.	1.3	76
85	Uniqueness plots: A simple graphical tool for identifying poor peak fits in X-ray photoelectron spectroscopy. Applied Surface Science, 2016, 387, 155-162.	3.1	51
86	Porous, High Capacity Coatings for Solid Phase Microextraction by Sputtering. Analytical Chemistry, 2016, 88, 1593-1600.	3.2	22
87	Multi-instrument characterization of five nanodiamond samples: a thorough example of nanomaterial characterization. Analytical and Bioanalytical Chemistry, 2016, 408, 1107-1124.	1.9	11
88	Silicon (100)/SiO2 by ToF-SIMS. Surface Science Spectra, 2015, 22, 1-6.	0.3	14
89	Multiâ€instrument characterization of poly(divinylbenzene) microspheres for use in liquid chromatography: as received, air oxidized, carbonized, and acid treated. Surface and Interface Analysis, 2015, 47, 815-823.	0.8	3
90	Hydroxylation of the silica in microfabricated thin layer chromatography plates as probed by time-of-flight secondary ion mass spectrometry and diffuse reflectance infrared Fourier transform spectroscopy. Surface and Interface Analysis, 2015, 47, 340-344.	0.8	3

#	Article	IF	CITATIONS
91	Separation of cannabinoids on three different mixedâ€mode columns containing carbon/nanodiamond/amineâ€polymer superficially porous particles. Journal of Separation Science, 2015, 38, 2968-2974.	1.3	10
92	Superhydrophobic Surfaces with Very Low Hysteresis Prepared by Aggregation of Silica Nanoparticles During <i>In Situ</i> Urea-Formaldehyde Polymerization. Journal of Nanoscience and Nanotechnology, 2015, 15, 10022-10036.	0.9	1
93	Microfabrication, separations, and detection by mass spectrometry on ultrathin-layer chromatography plates prepared via the low-pressure chemical vapor deposition of silicon nitride onto carbon nanotube templates. Journal of Chromatography A, 2015, 1404, 115-123.	1.8	21
94	Introduction of thiol moieties, including their thiol–ene reactions and air oxidation, onto polyelectrolyte multilayer substrates. Journal of Colloid and Interface Science, 2015, 459, 199-205.	5.0	14
95	Fluorine plasma treatment of bare and nitrilotris(methylene)triphosphonic acid (NP) protected aluminum: an XPS and ToF-SIMS study. Surface and Interface Analysis, 2015, 47, 56-62.	0.8	9
96	Atomic layer deposition of aluminum-free silica onto patterned carbon nanotube forests in the preparation of microfabricated thin-layer chromatography plates. Journal of Planar Chromatography - Modern TLC, 2014, 27, 151-156.	0.6	11
97	Data and device protection: A ToF-SIMS, wetting, and XPS study of an Apple iPod nano. Surface and Interface Analysis, 2014, 46, 106-108.	0.8	1
98	Assigning Oxidation States to Organic Compounds via Predictions from X-ray Photoelectron Spectroscopy: A Discussion of Approaches and Recommended Improvements. Journal of Chemical Education, 2014, 91, 232-238.	1.1	65
99	Comparison of the equivalent width, the autocorrelation width, and the variance as figures of merit for XPS narrow scans. Journal of Electron Spectroscopy and Related Phenomena, 2014, 197, 112-117.	0.8	10
100	Spectroscopic ellipsometric modeling of a Bi–Te–Se write layer of an optical data storage device as guided by atomic force microscopy, scanning electron microscopy, and X-ray diffraction. Thin Solid Films, 2014, 569, 124-130.	0.8	13
101	Al2O3 e-Beam Evaporated onto Silicon (100)/SiO2, by XPS. Surface Science Spectra, 2013, 20, 43-48.	0.3	29
102	Multiwalled Carbon Nanotube Forest Grown via Chemical Vapor Deposition from Iron Catalyst Nanoparticles, by XPS. Surface Science Spectra, 2013, 20, 62-67.	0.3	19
103	Carbon/Ternary Alloy/Carbon Optical Stack on Mylar as an Optical Data Storage Medium to Potentially Replace Magnetic Tape. ACS Applied Materials & Interfaces, 2013, 5, 8407-8413.	4.0	9
104	Multiâ€instrument characterization of the surfaces and materials in microfabricated, carbon nanotubeâ€templated thin layer chromatography plates. An analogy to †The Blind Men and the Elephant'. Surface and Interface Analysis, 2013, 45, 1273-1282.	0.8	52
105	Photoemission studies of fluorine functionalized porous graphitic carbon. Journal of Applied Physics, 2012, 111, .	1.1	62
106	Stable, microfabricated thin layer chromatography plates without volume distortion on patterned, carbon and Al2O3-primed carbon nanotube forests. Journal of Chromatography A, 2012, 1257, 195-203.	1.8	42
107	Unanticipated Câ∙€ Bonds in Covalent Monolayers on Silicon Revealed by NEXAFS. Langmuir, 2010, 26, 1512-1515.	1.6	17
108	Screening phosphatidylcholine biomarkers in mouse liver extracts from a hypercholesterolemia study using ESI-MS and chemometrics. Analytical and Bioanalytical Chemistry, 2009, 393, 643-654.	1.9	26

#	Article	IF	CITATIONS
109	Functionalization of Deuterium- and Hydrogen-Terminated Diamond Particles with Mono- and Multilayers using Di- <i>tert</i> -Amyl Peroxide and Their Use in Solid Phase Extraction. Chemistry of Materials, 2009, 21, 4359-4365.	3.2	18
110	Effect of Surface Free Energy on PDMS Transfer in Microcontact Printing and Its Application to ToF-SIMS to Probe Surface Energies. Langmuir, 2009, 25, 5674-5683.	1.6	74
111	Oneâ€Step Growth of ca. 2–15 nm Polymer Thin Films on Hydrogenâ€Terminated Silicon. Macromolecular Rapid Communications, 2008, 29, 638-644.	2.0	5
112	Time-of-Flight Secondary Ion Mass Spectrometry of a Range of Coal Samples: A Chemometrics (PCA,) Tj ETQq0 () 0 rgBT /0	Overlock 10 Tf
113	Antibacterial Activities of Thin Films Containing Ceragenins. ACS Symposium Series, 2008, , 65-78.	0.5	4
114	Chemistry of Olefin-Terminated Homogeneous and Mixed Monolayers on Scribed Silicon. Chemistry of Materials, 2007, 19, 1671-1678.	3.2	30
115	Direct Adsorption and Detection of Proteins, Including Ferritin, onto Microlens Array Patterned Bioarrays. Journal of the American Chemical Society, 2007, 129, 9252-9253.	6.6	49
116	Laser Activation Modification of Semiconductor Surfaces (LAMSS). Langmuir, 2006, 22, 10859-10863.	1.6	9
117	Chemomechanical Nanolithography: Nanografting on Silicon and Factors Impacting Linewidth. Journal of Nanoscience and Nanotechnology, 2006, 6, 1639-1643.	0.9	12
118	Multivariate Analysis of TOF-SIMS Spectra of Monolayers on Scribed Silicon. Analytical Chemistry, 2005, 77, 4654-4661.	3.2	40
119	Rapid and convenient method for preparing masters for microcontact printing with 1–12â€,μ4m features. Review of Scientific Instruments, 2004, 75, 3065-3067.	0.6	14
120	Evidence for a Radical Mechanism in Monolayer Formation on Silicon Ground (or Scribed) in the Presence of Alkyl Halides. Langmuir, 2004, 20, 1772-1774.	1.6	19
121	Alkyl Monolayers on Silica Surfaces Prepared Using Neat, Heated Dimethylmonochlorosilanes with Low Vapor Pressures. Langmuir, 2003, 19, 5169-5171.	1.6	23
122	Analysis of 10,16-Diaza-1,4,7,13-tetrathiacyclooctane-9,17-dione by XPS. Surface Science Spectra, 2002, 9, 234-240.	0.3	0
123	Analysis of 5-chloro-8-methoxy-2-(bromomethyl)quinoline by XPS. Surface Science Spectra, 2002, 9, 241-249.	0.3	1
124	Analysis of 7,13-Bis((8-hydroxy-2-quinolinyl)methyl)-1,4-dimethyl-1,4,7,13-tetraaza-10-thiacyclopentadecane by XPS. Surface Science Spectra, 2002, 9, 227-233.	0.3	0
125	Alkyl Monolayers on Silica Surfaces Prepared from Neat, Heated (Tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-dimethylchlorosilane Analyzed by XPS. Surface Science Spectra, 2002, 9, 260-265.	0.3	0
126	Formation of (Functionalized) Monolayers and Simultaneous Surface Patterning by Scribing Silicon in the Presence of Alkyl Halides. Chemistry of Materials, 2002, 14, 27-29.	3.2	54

#	Article	IF	CITATIONS
127	Alkyl Monolayers on Silica Surfaces Prepared from Neat, Heated 3-Glycidoxypropyldimethylethoxysilane Analyzed by XPS. Surface Science Spectra, 2001, 8, 291-296.	0.3	1
128	Alkyl Monolayers on Silica Surfaces Prepared from Neat, Heated ClSi(CH3)2(CH2)6CH=CH2 Analyzed by XPS. Surface Science Spectra, 2001, 8, 284-290.	0.3	0
129	Alkyl Monolayers on Silica Surfaces Prepared from Neat, Heated ClSi(CH3)2(CH2)17CH3 Analyzed by XPS. Surface Science Spectra, 2001, 8, 274-283.	0.3	0
130	Allâ€dielectric Fabryâ€Perot Cavity Design for Spectrally Selective Midâ€Infrared Absorption. Physica Status Solidi (B): Basic Research, 0, , 2100464.	0.7	7