
Joana Madureira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/740059/publications.pdf Version: 2024-02-01

Ιωλιά Μλομισεισλ

#	Article	IF	CITATIONS
1	Post-harvest treatment of cherry tomatoes by gamma radiation: Microbial and physicochemical parameters evaluation. Innovative Food Science and Emerging Technologies, 2016, 36, 1-9.	2.7	44
2	Preservation treatment of fresh raspberries by e-beam irradiation. Innovative Food Science and Emerging Technologies, 2020, 66, 102487.	2.7	31
3	Degradation of phenolic acids by gamma radiation as model compounds of cork wastewaters. Chemical Engineering Journal, 2018, 341, 227-237.	6.6	25
4	E-beam treatment to guarantee the safety and quality of cherry tomatoes. Innovative Food Science and Emerging Technologies, 2019, 55, 57-65.	2.7	24
5	The use of gamma radiation for extractability improvement of bioactive compounds in olive oil wastes. Science of the Total Environment, 2020, 727, 138706.	3.9	21
6	Copper(II) and Gallium(III) Complexes of <i>trans</i> -Bis(2-hydroxybenzyl) Cyclen Derivatives: Absence of a Cross-Bridge Proves Surprisingly More Favorable. Inorganic Chemistry, 2014, 53, 4371-4386.	1.9	20
7	Effects of gamma radiation on cork wastewater: Antioxidant activity and toxicity. Chemosphere, 2017, 169, 139-145.	4.2	19
8	Ionizing Radiation Technologies to Increase the Extraction of Bioactive Compounds from Agro-Industrial Residues: A Review. Journal of Agricultural and Food Chemistry, 2020, 68, 11054-11067.	2.4	18
9	Effect of Ionizing Radiation and Refrigeration on the Antioxidants of Strawberries. Food and Bioprocess Technology, 2020, 13, 1516-1527.	2.6	17
10	Applications of bioactive compounds extracted from olive industry wastes: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 453-476.	5.9	17
11	E-beam irradiation of strawberries: Investigation of microbiological, physicochemical, sensory acceptance properties and bioactive content. Innovative Food Science and Emerging Technologies, 2021, 73, 102769.	2.7	14
12	Oxidation of clofibric acid in aqueous solution using a non-thermal plasma discharge or gamma radiation. Chemosphere, 2017, 187, 395-403.	4.2	13
13	Phenolic Compounds from Irradiated Olive Wastes: Optimization of the Heat-Assisted Extraction Using Response Surface Methodology. Chemosensors, 2021, 9, 231.	1.8	12
14	Effect of ionizing radiation on antioxidant compounds present in cork wastewater. Water Science and Technology, 2013, 67, 374-379.	1.2	10
15	Effect of gamma radiation coupled to refrigeration on antioxidant capacity, sensory properties and shelf life of strawberries. LWT - Food Science and Technology, 2021, 150, 112088.	2.5	9
16	Tracking Human Adenovirus Inactivation by Gamma Radiation under Different Environmental Conditions. Applied and Environmental Microbiology, 2016, 82, 5166-5173.	1.4	8
17	Determination of pepper microbial contamination for low energy e-beam irradiation. Food Microbiology, 2021, 98, 103782.	2.1	8
18	Recovery of phenolic compounds from multi-component solution by a synthesized activated carbon using resorcinol and formaldehyde. Water Science and Technology, 2018, 77, 456-466.	1.2	5

Joana Madureira

#	Article	IF	CITATIONS
19	Evaluation of e-beam irradiation effects on the toxicity of slaughterhouse wastewaters. Environmental Technology (United Kingdom), 2018, 39, 873-877.	1.2	4
20	Radiolytic degradation mechanism of acetovanillone. Chemical Engineering Journal, 2020, 382, 122917.	6.6	4
21	Use of gamma radiation in sheep butter manufacturing process for shelf-life extension. International Dairy Journal, 2017, 71, 43-49.	1.5	3
22	A Biodegradation Bench Study of Cork Wastewater using Gamma Radiation. Journal of Advanced Oxidation Technologies, 2016, 19, .	0.5	2
23	Aqueous degradation of esculetin (6,7-dihydroxycoumarin) using gamma radiation. , 0, 181, 385-390.		1