Yanhe Lue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7400228/publications.pdf

Version: 2024-02-01

		236612	344852
37	2,088	25	36
papers	citations	h-index	g-index
39	39	39	1773
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	In Vitro Propagation of XXY Undifferentiated Mouse Spermatogonia: Model for Fertility Preservation in Klinefelter Syndrome Patients. International Journal of Molecular Sciences, 2022, 23, 173.	1.8	5
2	Reply: Spermatogonia stem cell technology: a new avenue for all age Klinefelter patients. Human Reproduction Update, 2021, 27, 970-972.	5.2	4
3	The emerging role of mitochondrial derived peptide humanin in the testis. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 130009.	1.1	4
4	The IL-27 component EBI-3 and its receptor subunit IL-27Rα are essential for the cytoprotective action of humanin on male germ cellsâ€. Biology of Reproduction, 2021, 104, 717-730.	1.2	4
5	Age-related presence of spermatogonia in patients with Klinefelter syndrome: a systematic review and meta-analysis. Human Reproduction Update, 2020, 26, 58-72.	5.2	38
6	The mitochondrial derived peptide humanin is a regulator of lifespan and healthspan. Aging, 2020, 12, 11185-11199.	1.4	67
7	The humanin analogue (HNG) prevents temozolomide-induced male germ cell apoptosis and other adverse effects in severe combined immuno-deficiency (SCID) mice bearing human medulloblastoma. Experimental and Molecular Pathology, 2019, 109, 42-50.	0.9	8
8	Testosterone protects high-fat/low-carbohydrate diet-induced nonalcoholic fatty liver disease in castrated male rats mainly via modulating endoplasmic reticulum stress. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E366-E376.	1.8	25
9	Humanin analog enhances the protective effect of dexrazoxane against doxorubicin-induced cardiotoxicity. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H634-H643.	1.5	30
10	Triangulating the sexually dimorphic brain through high-resolution neuroimaging of murine sex chromosome aneuploidies. Brain Structure and Function, 2015, 220, 3581-3593.	1.2	21
11	The Potent Humanin Analogue (HNG) Protects Germ Cells and Leucocytes While Enhancing Chemotherapy-Induced Suppression of Cancer Metastases in Male Mice. Endocrinology, 2015, 156, 4511-4521.	1.4	33
12	Functional role of progestin and the progesterone receptor in the suppression of spermatogenesis in rodents. Andrology, 2013, 1, 308-317.	1.9	39
13	Mouse model for men with klinefelter syndrome: a multifaceted fit for a complex disorder. Acta Paediatrica, International Journal of Paediatrics, 2011, 100, 892-899.	0.7	16
14	Genetic and hormonal control of bone volume, architecture, and remodeling in XXY mice. Journal of Bone and Mineral Research, 2010, 25, 2148-2154.	3.1	23
15	Genetic, hormonal, and metabolomic influences on social behavior and sex preference of XXY mice. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E446-E455.	1.8	27
16	Opposing Roles of Insulin-Like Growth Factor Binding Protein 3 and Humanin in the Regulation of Testicular Germ Cell Apoptosis. Endocrinology, 2010, 151, 350-357.	1.4	54
17	Levonorgestrel Enhances Spermatogenesis Suppression by Testosterone with Greater Alteration in Testicular Gene Expression in Men1. Biology of Reproduction, 2009, 80, 484-492.	1.2	12
18	Mitogen-Activated Protein Kinase Signaling in Male Germ Cell Apoptosis in the Rat1. Biology of Reproduction, 2009, 80, 771-780.	1.2	49

#	Article	IF	CITATIONS
19	Fate of Bone Marrow Stem Cells Transplanted into the Testis. American Journal of Pathology, 2007, 170, 899-908.	1.9	115
20	Transient Testicular Warming Enhances the Suppressive Effect of Testosterone on Spermatogenesis in Adult Cynomolgus Monkeys (Macaca fascicularis). Journal of Clinical Endocrinology and Metabolism, 2006, 91, 539-545.	1.8	60
21	Involvement of p38 Mitogen-Activated Protein Kinase and Inducible Nitric Oxide Synthase in Apoptotic Signaling of Murine and Human Male Germ Cells after Hormone Deprivation. Molecular Endocrinology, 2006, 20, 1597-1609.	3.7	67
22	Functional Role of Caspases in Heat-Induced Testicular Germ Cell Apoptosis 1. Biology of Reproduction, 2005, 72, 516-522.	1.2	40
23	XXY Mice Exhibit Gonadal and Behavioral Phenotypes Similar to Klinefelter Syndrome. Endocrinology, 2005, 146, 4148-4154.	1.4	65
24	Minocycline up-regulates BCL-2 levels in mitochondria and attenuates male germ cell apoptosis. Biochemical and Biophysical Research Communications, 2005, 337, 663-669.	1.0	35
25	Mouse model of male germ cell apoptosis in response to a lack of hormonal stimulation. Indian Journal of Experimental Biology, 2005, 43, 1048-57.	0.5	6
26	Mitochondria-Dependent Pathway Is Involved in Heat-Induced Male Germ Cell Death: Lessons from Mutant Mice1. Biology of Reproduction, 2004, 70, 1534-1540.	1.2	87
27	Deciphering the pathways of germ cell apoptosis in the testis. Journal of Steroid Biochemistry and Molecular Biology, 2003, 85, 175-182.	1.2	168
28	Functional Role of Inducible Nitric Oxide Synthase in the Induction of Male Germ Cell Apoptosis, Regulation of Sperm Number, and Determination of Testes Size: Evidence from Null Mutant Mice. Endocrinology, 2003, 144, 3092-3100.	1.4	89
29	Key Apoptotic Pathways for Heat-Induced Programmed Germ Cell Death in the Testis. Endocrinology, 2003, 144, 3167-3175.	1.4	185
30	Cytochrome P450 Genes Are Differentially Expressed in Female and Male Hepatocyte Retinoid X Receptor α-Deficient Mice. Endocrinology, 2003, 144, 2311-2318.	1.4	37
31	Impairment of Spermatogenesis in Transgenic Mice With Selective Overexpression of Bclâ€2 in the Somatic Cells of the Testis. Journal of Andrology, 2001, 22, 981-991.	2.0	39
32	XXY Male Mice: An Experimental Model for Klinefelter Syndrome*. Endocrinology, 2001, 142, 1461-1470.	1.4	64
33	Redistribution of Bax Is an Early Step in an Apoptotic Pathway Leading to Germ Cell Death in Rats, Triggered by Mild Testicular Hyperthermia1. Biology of Reproduction, 2000, 63, 1683-1690.	1.2	97
34	Testicular Heat Exposure Enhances the Suppression of Spermatogenesis by Testosterone in Rats: The "Two-Hit―Approach to Male Contraceptive Development1. Endocrinology, 2000, 141, 1414-1424.	1.4	96
35	Spontaneous Germ Cell Apoptosis in Humans: Evidence for Ethnic Differences in the Susceptibility of Germ Cells to Programmed Cell Death. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 152-156.	1.8	142
36	Significance of Apoptosis in the Temporal and Stage-Specific Loss of Germ Cells in the Adult Rat after Gonadotropin Deprivation1. Biology of Reproduction, 1997, 57, 1193-1201.	1.2	140

ARTICLE IF CITATIONS

37 XXY Male Mice: An Experimental Model for Klinefelter Syndrome., 0, . 30