Juan P FernÃ;ndez-BlÃ;zquez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7399997/publications.pdf

Version: 2024-02-01

62 papers 1,457 citations

331259 21 h-index 35 g-index

62 all docs 62 docs citations

62 times ranked

2084 citing authors

#	Article	IF	CITATIONS
1	An ultrasensitive molecularly imprinted polymer-based electrochemical sensor for the determination of SARS-CoV-2-RBD by using macroporous gold screen-printed electrode. Biosensors and Bioelectronics, 2022, 196, 113729.	5.3	57
2	Processing and properties of PLA/Mg filaments for 3D printing of scaffolds for biomedical applications. Rapid Prototyping Journal, 2022, 28, 884-894.	1.6	21
3	Unveiling the reinforcement effects in cottonseed protein/polycaprolactone blend biocomposites. Composites Science and Technology, 2022, 225, 109480.	3.8	5
4	Processing and mechanical properties of novel biodegradable poly-lactic acid/Zn 3D printed scaffolds for application in tissue regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 132, 105290.	1.5	13
5	Processing and properties of long recycled-carbon-fibre reinforced polypropylene. Composites Part B: Engineering, 2021, 211, 108653.	5.9	18
6	Post-processing effects on microstructure, interlaminar and thermal properties of 3D printed continuous carbon fibre composites. Composites Part B: Engineering, 2021, 210, 108652.	5.9	44
7	Development of high performing polymer electrolytes based on superconcentrated solutions. Journal of Power Sources, 2021, 506, 230220.	4.0	15
8	Stronger aramids through molecular design and nanoprocessing. Polymer Chemistry, 2020, 11, 1489-1495.	1.9	4
9	Multiscale SAXS/WAXD characterisation of the deformation mechanisms of electrospun PCL scaffolds. Polymer, 2020, 203, 122775.	1.8	10
10	Fabrication and Characterization of PEEK/PEI Multilayer Composites. Polymers, 2020, 12, 2765.	2.0	18
11	Polycarbonate/Sulfonamide Composites with Ultralow Contents of Halogen-Free Flame Retardant and Desirable Compatibility. Materials, 2020, 13, 3656.	1.3	12
12	On the improvement of properties of bioplastic composites derived from wasted cottonseed protein by rational cross-linking and natural fiber reinforcement. Green Chemistry, 2020, 22, 8642-8655.	4.6	29
13	Production of graphene nanoplate/polyetheretherketone composites by semi-industrial melt-compounding. Heliyon, 2020, 6, e03740.	1.4	12
14	Scalable graphene-based nanocomposite coatings for flexible and washable conductive textiles. Carbon, 2020, 167, 495-503.	5.4	23
15	Exceptionally Stable Microporous Organic Frameworks with Rigid Building Units for Efficient Small Gas Adsorption and Separation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7548-7556.	4.0	11
16	An approach to analyse the factors behind the micromechanical response of 3D-printed composites. Composites Part B: Engineering, 2020, 186, 107820.	5.9	73
17	Long-living and highly efficient bio-hybrid light-emitting diodes with zero-thermal-quenching biophosphors. Nature Communications, 2020, 11, 879.	5.8	24
18	Biogenic fluorescent protein–silk fibroin phosphors for high performing light-emitting diodes. Materials Horizons, 2020, 7, 1790-1800.	6.4	18

#	Article	IF	CITATIONS
19	MECHANICAL AND MORPHOLOGICAL PROPERTIES OF POLY(3-HYDROXYBUTYRATE)-THERMOPLASTIC STARCH/CLAY/EUGENOL BIONANOCOMPOSITES. Journal of the Chilean Chemical Society, 2020, 65, 4992-4997.	0.5	3
20	Deciphering Limitations to Meet Highly Stable Bioâ€Hybrid Lightâ€Emitting Diodes. Advanced Functional Materials, 2019, 29, 1904356.	7.8	13
21	Morphology, thermal, and crystallization analysis of polylactic acid in the presence of carbon nanotube fibers with tunable fiber loadings through polymer infiltration. Polymer Crystallization, 2019, 2, e10081.	0.5	2
22	Supramolecular Assembly of Oriented Spherulitic Crystals of Conjugated Polymers Surrounding Carbon Nanotube Fibers. Macromolecular Rapid Communications, 2019, 40, 1900098.	2.0	8
23	Effect of polysulfone brush functionalization on thermo-mechanical properties of melt extruded graphene/polysulfone nanocomposites. Carbon, 2019, 151, 84-93.	5.4	11
24	Determination of cross-sectional area of natural plant fibres and fibre failure analysis by in situ SEM observation during microtensile tests. Cellulose, 2019, 26, 4693-4706.	2.4	17
25	Non-Isothermal Crystallization Behavior of PEEK/Graphene Nanoplatelets Composites from Melt and Glass States. Polymers, 2019, 11, 124.	2.0	33
26	Nanoindentation mapping of multiscale composites of graphene-reinforced polypropylene and carbon fibres. Composites Science and Technology, 2019, 169, 151-157.	3.8	22
27	Fractal carbon nanotube fibers with mesoporous crystalline structure. Carbon, 2017, 122, 47-53.	5.4	30
28	Effect of nitrogen and oxygen doped carbon nanotubes on flammability of epoxy nanocomposites. Carbon, 2017, 121, 193-200.	5.4	36
29	Bio-based carbonaceous composite materials from epoxidised linseed oil, bio-derived curing agent and starch with controllable functionality. RSC Advances, 2017, 7, 24282-24290.	1.7	0
30	The role of mesophases in the ordering of polymers. European Polymer Journal, 2016, 81, 661-673.	2.6	6
31	Threading through Macrocycles Enhances the Performance of Carbon Nanotubes as Polymer Fillers. ACS Nano, 2016, 10, 8012-8018.	7.3	30
32	Preparation and Properties of a Main-Chain Smectic Liquid-Crystalline Elastomer with Shape-Memory Ability. Macromolecules, 2016, 49, 5306-5314.	2,2	5
33	Relationship Between Composition, Structure and Dynamics of Main-Chain Liquid Crystalline Polymers with Biphenyl Mesogens., 2016,, 453-476.		4
34	Macroscopic CNT fibres inducing non-epitaxial nucleation and orientation of semicrystalline polymers. Scientific Reports, 2015, 5, 16729.	1.6	17
35	Nanostructured medical sutures with antibacterial properties. Biomaterials, 2015, 52, 291-300.	5.7	103
36	How do graphite nanoplates affect the fracture toughness of polypropylene composites?. Composites Science and Technology, 2015, 111, 9-16.	3.8	27

#	Article	IF	CITATIONS
37	Real time monitoring of click chemistry self-healing in polymer composites. Journal of Materials Chemistry A, 2014, 2, 3881.	5.2	21
38	Thermomechanical relaxation and different water states in cottonseed protein derived bioplastics. RSC Advances, 2014, 4, 32320.	1.7	25
39	Nanostructured Polymer Fibers with Enhanced Adhesion to Epoxy Matrices. Plasma Processes and Polymers, 2013, 10, 207-212.	1.6	6
40	Effect of the particle size and solids volume fraction on the thermal degradation behaviour of Invar 36 feedstocks. Polymer Degradation and Stability, 2013, 98, 2546-2555.	2.7	12
41	Thermoset curing through Joule heating of nanocarbons for composite manufacture, repair and soldering. Carbon, 2013, 63, 523-529.	5.4	68
42	Templateless nanostructuration of polymer surfaces. Soft Matter, 2012, 8, 2503.	1.2	19
43	Distinct Nanopatterns on Dry Etched Semicrystalline Polymer Films Controlled by Mechanical Orientation. ACS Macro Letters, 2012, 1, 627-631.	2.3	12
44	Bioinspired Actuated Adhesive Patterns of Liquid Crystalline Elastomers. Advanced Materials, 2012, 24, 4601-4604.	11.1	110
45	Isotactic Polypropylene with (3,1) Chain-Walking Defects: Characterization, Crystallization, and Melting Behaviors. Macromolecules, 2011, 44, 3436-3451.	2.2	41
46	Nanofibrillar Patterns on PET: The Influence of Plasma Parameters in Surface Morphology. Plasma Processes and Polymers, 2011, 8, 876-884.	1.6	31
47	Superhydrophilic and superhydrophobic nanostructured surfaces via plasma treatment. Journal of Colloid and Interface Science, 2011, 357, 234-238.	5.0	128
48	Time-resolved FTIR spectroscopic study of the evolution of helical structure during isothermal crystallization of propylene 1-hexene copolymers. Identification of regularity bands associated with the trigonal polymorph. Polymer, 2011, 52, 2856-2868.	1.8	25
49	Structural changes induced by deformation in an ethylene–(vinyl alcohol) copolymer: simultaneous measurements of uniaxial stretching and <i>in situ</i> i> wideâ€angle Xâ€ray scattering. Polymer International, 2010, 59, 1141-1147.	1.6	0
50	Nanofibrillar Patterns by Plasma Etching: The Influence of Polymer Crystallinity and Orientation in Surface Morphology. Macromolecules, 2010, 43, 9908-9917.	2.2	69
51	Applications of Synchrotron X-Ray Diffraction to the Study of the Phase Behavior in Liquid Crystalline Polymers. Lecture Notes in Physics, 2009, , 157-182.	0.3	1
52	Molecular weight effect on the obtainment of parallel and perpendicular orientation in thermotropic poly(diethylene glycol p,p′-bibenzoate). Polymer Bulletin, 2008, 60, 89-96.	1.7	4
53	Simultaneous Synchrotron X-ray Diffraction and Stressâ [*] Strain or Stressâ [*] Relaxation Experiments for the Study of Parallel and Perpendicular Orientation in a Liquid Crystalline Polymer. Macromolecules, 2008, 41, 421-428.	2.2	3
54	Structure and Phase Transitions of Ethyl $4\hat{a}\in^2$ -n-undecyloxybiphenyl-4-carboxylate and Its Acid Derivative. Molecular Crystals and Liquid Crystals, 2008, 489, 222/[548]-236/[562].	0.4	2

#	Article	IF	CITATIONS
55	The Two Crystallization Modes of Mesophase Forming Polymers. Macromolecules, 2007, 40, 1775-1778.	2.2	15
56	Parallel and Perpendicular Orientation in a Thermotropic Main-Chain Liquid-Crystalline Polymer. Macromolecules, 2007, 40, 703-709.	2.2	17
57	Thermotropic Phase Behavior of a Liquid-Crystalline Poly(ether ester) Derived from Hydroxydibenzoic Acid, 2-Methyl-1,3-propanediol andR-1,3-Butanediol. Macromolecular Chemistry and Physics, 2007, 208, 520-528.	1.1	6
58	Synthesis, Phase Behaviour and Mechanical Properties of Poly(2â€methylâ€1,3â€propanediolâ€4,4′â€bibenzo Macromolecular Chemistry and Physics, 2007, 208, 2611-2620.	ate). 1.1	8
59	Structural relaxation in the amorphous and liquid-crystalline phases of a thermotropic polymer. Polymer Bulletin, 2007, 58, 941-949.	1.7	3
60	Liquid-crystalline copolymers of bibenzoate and terephthalate units. Polymer Bulletin, 2006, 56, 571-577.	1.7	10
61	Dynamic mechanical analysis of the two glass transitions in a thermotropic polymer. Polymer, 2005, 46, 10004-10010.	1.8	21
62	Observation of Two Glass Transitions in a Thermotropic Liquid-Crystalline Polymer. Macromolecules, 2004, 37, 9018-9026.	2.2	26