
## Daniel R Feikin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/73991/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. Lancet, The, 2022, 399, 924-944.                                                                                           | 6.3 | 752       |
| 2  | Assessing vaccine effectiveness against severe COVID-19 disease caused by omicron variant. Report from a meeting of the World Health Organization. Vaccine, 2022, 40, 3516-3527.                                                                                        | 1.7 | 69        |
| 3  | Duration of effectiveness of vaccination against COVID-19 caused by the omicron variant. Lancet Infectious Diseases, The, 2022, 22, 1114-1116.                                                                                                                          | 4.6 | 97        |
| 4  | Biological factors that may impair transplacental transfer of RSV antibodies: Implications for maternal immunization policy and research priorities for low- and middle-income countries. Vaccine, 2022, 40, 4361-4370.                                                 | 1.7 | 7         |
| 5  | The Etiology of Pneumonia From Analysis of Lung Aspirate and Pleural Fluid Samples: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Clinical Infectious Diseases, 2021, 73, e3788-e3796.                                                  | 2.9 | 14        |
| 6  | Upper Respiratory Tract Co-detection of Human Endemic Coronaviruses and High-density<br>Pneumococcus Associated With Increased Severity Among HIV-Uninfected Children Under 5 Years Old<br>in the PERCH Study. Pediatric Infectious Disease Journal, 2021, 40, 503-512. | 1.1 | 5         |
| 7  | Epidemiology of the Rhinovirus (RV) in African and Southeast Asian Children: A Case-Control<br>Pneumonia Etiology Study. Viruses, 2021, 13, 1249.                                                                                                                       | 1.5 | 9         |
| 8  | Evaluation of post-introduction COVID-19 vaccine effectiveness: Summary of interim guidance of the World Health Organization. Vaccine, 2021, 39, 4013-4024.                                                                                                             | 1.7 | 110       |
| 9  | The Etiology of Pneumonia in HIV-1-infected South African Children in the Era of Antiretroviral<br>Treatment. Pediatric Infectious Disease Journal, 2021, 40, S69-S78.                                                                                                  | 1.1 | 6         |
| 10 | The Etiology of Pneumonia in Zambian Children. Pediatric Infectious Disease Journal, 2021, 40, S40-S49.                                                                                                                                                                 | 1.1 | 10        |
| 11 | The Etiology of Childhood Pneumonia in Bangladesh. Pediatric Infectious Disease Journal, 2021, 40,<br>S79-S90.                                                                                                                                                          | 1.1 | 8         |
| 12 | The Etiology of Pneumonia in HIV-uninfected South African Children. Pediatric Infectious Disease<br>Journal, 2021, 40, S59-S68.                                                                                                                                         | 1.1 | 10        |
| 13 | The Etiology of Childhood Pneumonia in The Gambia. Pediatric Infectious Disease Journal, 2021, 40,<br>S7-S17.                                                                                                                                                           | 1.1 | 12        |
| 14 | The Etiology of Pneumonia in HIV-uninfected Children in Kilifi, Kenya. Pediatric Infectious Disease<br>Journal, 2021, 40, S29-S39.                                                                                                                                      | 1.1 | 9         |
| 15 | The Etiology of Childhood Pneumonia in Mali. Pediatric Infectious Disease Journal, 2021, 40, S18-S28.                                                                                                                                                                   | 1.1 | 13        |
| 16 | Introduction to the Site-specific Etiologic Results From the Pneumonia Etiology Research for Child<br>Health (PERCH) Study. Pediatric Infectious Disease Journal, 2021, 40, S1-S6.                                                                                      | 1.1 | 4         |
| 17 | Etiology and Clinical Characteristics of Severe Pneumonia Among Young Children in Thailand.<br>Pediatric Infectious Disease Journal, 2021, 40, S91-S100.                                                                                                                | 1.1 | 8         |
| 18 | The Etiology of Pneumonia in HIV-infected Zambian Children. Pediatric Infectious Disease Journal, 2021,<br>40, S50-S58.                                                                                                                                                 | 1.1 | 12        |

| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The Predictive Performance of a Pneumonia Severity Score in Human Immunodeficiency Virus–negative<br>Children Presenting to Hospital in 7 Low- and Middle-income Countries. Clinical Infectious Diseases,<br>2020, 70, 1050-1057.                              | 2.9  | 26        |
| 20 | Digital auscultation in PERCH: Associations with chest radiography and pneumonia mortality in children. Pediatric Pulmonology, 2020, 55, 3197-3208.                                                                                                            | 1.0  | 13        |
| 21 | Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study. Lancet, The, 2019, 394, 757-779.                                                                   | 6.3  | 569       |
| 22 | Case-control vaccine effectiveness studies: Preparation, design, and enrollment of cases and controls. Vaccine, 2017, 35, 3295-3302.                                                                                                                           | 1.7  | 77        |
| 23 | Chest Radiograph Findings in Childhood Pneumonia Cases From the Multisite PERCH Study. Clinical<br>Infectious Diseases, 2017, 64, S262-S270.                                                                                                                   | 2.9  | 56        |
| 24 | Case-control vaccine effectiveness studies: Data collection, analysis and reporting results. Vaccine, 2017, 35, 3303-3308.                                                                                                                                     | 1.7  | 31        |
| 25 | Density of Upper Respiratory Colonization With Streptococcus pneumoniae and Its Role in the<br>Diagnosis of Pneumococcal Pneumonia Among Children Aged <5 Years in the PERCH Study. Clinical<br>Infectious Diseases, 2017, 64, S317-S327.                      | 2.9  | 96        |
| 26 | Mobile phone-delivered reminders and incentives to improve childhood immunisation coverage and<br>timeliness in Kenya (M-SIMU): a cluster randomised controlled trial. The Lancet Global Health, 2017, 5,<br>e428-e438.                                        | 2.9  | 126       |
| 27 | The Incremental Value of Repeated Induced Sputum and Gastric Aspirate Samples for the Diagnosis of<br>Pulmonary Tuberculosis in Young Children With Acute Community-Acquired Pneumonia. Clinical<br>Infectious Diseases, 2017, 64, S309-S316.                  | 2.9  | 21        |
| 28 | Listening panel agreement and characteristics of lung sounds digitally recorded from children aged<br>1–59 months enrolled in the Pneumonia Etiology Research for Child Health (PERCH) case–control<br>study. BMJ Open Respiratory Research, 2017, 4, e000193. | 1.2  | 23        |
| 29 | Effectiveness of a Third Dose of MMR Vaccine for Mumps Outbreak Control. New England Journal of Medicine, 2017, 377, 947-956.                                                                                                                                  | 13.9 | 131       |
| 30 | The Diagnostic Utility of Induced Sputum Microscopy and Culture in Childhood Pneumonia. Clinical<br>Infectious Diseases, 2017, 64, S280-S288.                                                                                                                  | 2.9  | 29        |
| 31 | Detection of Pneumococcal DNA in Blood by Polymerase Chain Reaction for Diagnosing Pneumococcal<br>Pneumonia in Young Children From Low- and Middle-Income Countries. Clinical Infectious Diseases,<br>2017, 64, S347-S356.                                    | 2.9  | 37        |
| 32 | Addressing the Analytic Challenges of Cross-Sectional Pediatric Pneumonia Etiology Data. Clinical<br>Infectious Diseases, 2017, 64, S197-S204.                                                                                                                 | 2.9  | 28        |
| 33 | Introduction to the Epidemiologic Considerations, Analytic Methods, and Foundational Results From the Pneumonia Etiology Research for Child Health Study. Clinical Infectious Diseases, 2017, 64, S179-S184.                                                   | 2.9  | 19        |
| 34 | The Enduring Challenge of Determining Pneumonia Etiology in Children: Considerations for Future<br>Research Priorities. Clinical Infectious Diseases, 2017, 64, S188-S196.                                                                                     | 2.9  | 48        |
| 35 | Standardized Interpretation of Chest Radiographs in Cases of Pediatric Pneumonia From the PERCH<br>Study. Clinical Infectious Diseases, 2017, 64, S253-S261.                                                                                                   | 2.9  | 62        |
| 36 | Colonization Density of the Upper Respiratory Tract as a Predictor of Pneumonia—Haemophilus<br>influenzae, Moraxella catarrhalis, Staphylococcus aureus, and Pneumocystis jirovecii. Clinical<br>Infectious Diseases, 2017, 64, S328-S336.                     | 2.9  | 49        |

| #  | Article                                                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Is Higher Viral Load in the Upper Respiratory Tract Associated With Severe Pneumonia? Findings From the PERCH Study. Clinical Infectious Diseases, 2017, 64, S337-S346.                                                                                                                                                        | 2.9 | 81        |
| 38 | The Effect of Antibiotic Exposure and Specimen Volume on the Detection of Bacterial Pathogens in Children With Pneumonia. Clinical Infectious Diseases, 2017, 64, S368-S377.                                                                                                                                                   | 2.9 | 70        |
| 39 | Microscopic Analysis and Quality Assessment of Induced Sputum From Children With Pneumonia in the PERCH Study. Clinical Infectious Diseases, 2017, 64, S271-S279.                                                                                                                                                              | 2.9 | 32        |
| 40 | Limited Utility of Polymerase Chain Reaction in Induced Sputum Specimens for Determining the Causes of Childhood Pneumonia in Resource-Poor Settings: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Clinical Infectious Diseases, 2017, 64, S289-S300.                                         | 2.9 | 31        |
| 41 | Association of C-Reactive Protein With Bacterial and Respiratory Syncytial Virus–Associated<br>Pneumonia Among Children Aged <5 Years in the PERCH Study. Clinical Infectious Diseases, 2017, 64,<br>S378-S386.                                                                                                                | 2.9 | 84        |
| 42 | Should Controls With Respiratory Symptoms Be Excluded From Case-Control Studies of Pneumonia Etiology? Reflections From the PERCH Study. Clinical Infectious Diseases, 2017, 64, S205-S212.                                                                                                                                    | 2.9 | 25        |
| 43 | Standardization of Clinical Assessment and Sample Collection Across All PERCH Study Sites. Clinical Infectious Diseases, 2017, 64, S228-S237.                                                                                                                                                                                  | 2.9 | 27        |
| 44 | Evaluation of Pneumococcal Load in Blood by Polymerase Chain Reaction for the Diagnosis of<br>Pneumococcal Pneumonia in Young Children in the PERCH Study. Clinical Infectious Diseases, 2017, 64,<br>S357-S367.                                                                                                               | 2.9 | 30        |
| 45 | Standardization of Laboratory Methods for the PERCH Study. Clinical Infectious Diseases, 2017, 64, S245-S252.                                                                                                                                                                                                                  | 2.9 | 48        |
| 46 | Pertussis-Associated Pneumonia in Infants and Children From Low- and Middle-Income Countries Participating in the PERCH Study. Clinical Infectious Diseases, 2016, 63, S187-S196.                                                                                                                                              | 2.9 | 38        |
| 47 | The Mobile Solutions for Immunization (M-SIMU) Trial: A Protocol for a Cluster Randomized<br>Controlled Trial That Assesses the Impact of Mobile Phone Delivered Reminders and Travel Subsidies<br>to Improve Childhood Immunization Coverage Rates and Timeliness in Western Kenya. JMIR Research<br>Protocols, 2016, 5, e72. | 0.5 | 19        |
| 48 | Individual level determinants for not receiving immunization, receiving immunization with delay, and being severely underimmunized among rural western Kenyan children. Vaccine, 2015, 33, 6778-6785.                                                                                                                          | 1.7 | 40        |
| 49 | Risk of Injection-Site Abscess among Infants Receiving a Preservative-Free, Two-Dose Vial Formulation of Pneumococcal Conjugate Vaccine in Kenya. PLoS ONE, 2015, 10, e0141896.                                                                                                                                                | 1.1 | 8         |
| 50 | Vaccine preventable disease incidence as a complement to vaccine efficacy for setting vaccine policy.<br>Vaccine, 2014, 32, 3133-3138.                                                                                                                                                                                         | 1.7 | 35        |
| 51 | Use of vaccines as probes to define disease burden. Lancet, The, 2014, 383, 1762-1770.                                                                                                                                                                                                                                         | 6.3 | 101       |
| 52 | The feasibility of using mobile-phone based SMS reminders and conditional cash transfers to improve timely immunization in rural Kenya. Vaccine, 2013, 31, 987-993.                                                                                                                                                            | 1.7 | 111       |
| 53 | Global and regional burden of hospital admissions for severe acute lower respiratory infections in young children in 2010: a systematic analysis. Lancet, The, 2013, 381, 1380-1390.                                                                                                                                           | 6.3 | 584       |
| 54 | Serotype-Specific Changes in Invasive Pneumococcal Disease after Pneumococcal Conjugate Vaccine<br>Introduction: A Pooled Analysis of Multiple Surveillance Sites. PLoS Medicine, 2013, 10, e1001517.                                                                                                                          | 3.9 | 393       |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Identification and Selection of Cases and Controls in the Pneumonia Etiology Research for Child<br>Health Project. Clinical Infectious Diseases, 2012, 54, S117-S123.                                                                     | 2.9 | 50        |
| 56 | Profile: The KEMRI/CDC Health and Demographic Surveillance SystemWestern Kenya. International<br>Journal of Epidemiology, 2012, 41, 977-987.                                                                                              | 0.9 | 199       |
| 57 | The Definition of Pneumonia, the Assessment of Severity, and Clinical Standardization in the<br>Pneumonia Etiology Research for Child Health Study. Clinical Infectious Diseases, 2012, 54, S109-S116.                                    | 2.9 | 157       |
| 58 | The Pneumonia Etiology Research for Child Health Project: A 21st Century Childhood Pneumonia<br>Etiology Study. Clinical Infectious Diseases, 2012, 54, S93-S101.                                                                         | 2.9 | 164       |
| 59 | A Reversal in Reductions of Child Mortality in Western Kenya, 2003–2009. American Journal of<br>Tropical Medicine and Hygiene, 2011, 85, 597-605.                                                                                         | 0.6 | 94        |
| 60 | Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in<br>developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial.<br>Lancet, The, 2010, 376, 606-614. | 6.3 | 626       |