
David R Smyth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7398886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution and genetic control of the floral ground plan. New Phytologist, 2018, 220, 70-86.	3.5	38
2	Wrinkles on Sepals: Cuticular Ridges Form when Cuticle Production Outpaces Epidermal Cell Expansion. Molecular Plant, 2017, 10, 540-541.	3.9	19
3	PETAL LOSS and ROXY1 Interact to Limit Growth Within and between Sepals But to Promote Petal Initiation in Arabidopsis thaliana. Frontiers in Plant Science, 2017, 8, 152.	1.7	18
4	Helical growth in plant organs: mechanisms and significance. Development (Cambridge), 2016, 143, 3272-3282.	1.2	72
5	PETAL LOSS, a trihelix transcription factor that represses growth in Arabidopsis thaliana, binds the energy-sensing SnRK1 kinase AKIN10. Journal of Experimental Botany, 2015, 66, 2475-2485.	2.4	31
6	The Plant CellIntroduces Breakthrough Reports: A New Forum for Cutting-Edge Plant Research. Plant Cell, 2015, , tpc.15.00862.	3.1	1
7	Editorial overview: Plant morphogenesis—new understanding of its organization and evolution. Current Opinion in Plant Biology, 2014, 17, v-ix.	3.5	1
8	Functional domains of the <scp>PETAL LOSS</scp> protein, a trihelix transcription factor that represses regional growth in <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2014, 79, 477-491.	2.8	25
9	Auxin controls petal initiation in <i>Arabidopsis</i> . Development (Cambridge), 2013, 140, 185-194.	1.2	75
10	The <i>seirena</i> B Class Floral Homeotic Mutant of California Poppy (<i>Eschscholzia) Tj ETQq0 0 0 rgBT /Ove MADS Domain Protein Complexes Â. Plant Cell, 2013, 25, 438-453.</i>	rlock 10 Tf 3.1	50 387 Td (ca 52
11	Interactions of CUP-SHAPED COTYLEDON and SPATULA Genes Control Carpel Margin Development in Arabidopsis thaliana. Plant and Cell Physiology, 2012, 53, 1134-1143.	1.5	56
12	The ABC model of flower development: then and now. Development (Cambridge), 2012, 139, 4095-4098.	1.2	147
13	The trihelix family of transcription factors – light, stress and development. Trends in Plant Science, 2012, 17, 163-171.	4.3	165
14	<i>PETAL LOSS</i> is a boundary gene that inhibits growth between developing sepals in <i>Arabidopsis thaliana</i> . Plant Journal, 2012, 71, 724-735.	2.8	60
15	<i>SPATULA</i> and <i>ALCATRAZ,</i> are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development. Plant Journal, 2011, 68, 816-829.	2.8	92
16	INDEHISCENT and SPATULA Interact to Specify Carpel and Valve Margin Tissue and Thus Promote Seed Dispersal in <i>Arabidopsis</i> Â. Plant Cell, 2011, 23, 3641-3653.	3.1	165
17	Regulation of tissue-specific expression of SPATULA, a bHLH gene involved in carpel development, seedling germination, and lateral organ growth in Arabidopsis. Journal of Experimental Botany, 2010, 61, 1495-1508.	2.4	72
18	Functional domains of SPATULA, a bHLH transcription factor involved in carpel and fruit development in Arabidopsis. Plant Journal, 2008, 55, 40-52.	2.8	72

#	Article	IF	CITATIONS
19	David Smyth. Current Biology, 2007, 17, R1032-R1034.	1.8	Ο
20	Morphogenesis of Flowers—Our Evolving View. Plant Cell, 2005, 17, 330-341.	3.1	48
21	Floral and Vegetative Morphogenesis in California Poppy (Eschscholzia californica Cham.). International Journal of Plant Sciences, 2005, 166, 537-555.	0.6	58
22	PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower. Development (Cambridge), 2004, 131, 4035-4045.	1.2	144
23	Behind the blooms: David Smyth. Nature, 2003, 422, 121-121.	13.7	Ο
24	CRABS CLAWandSPATULAGenes Regulate Growth and Pattern Formation during Gynoecium Development inArabidopsis thaliana. International Journal of Plant Sciences, 2002, 163, 17-41.	0.6	130
25	TRANSPARENT TESTA GLABRA2, a Trichome and Seed Coat Development Gene of Arabidopsis, Encodes a WRKY Transcription Factor. Plant Cell, 2002, 14, 1359-1375.	3.1	690
26	Champagne surprise. Nature, 2002, 416, 801-801.	13.7	11
27	Flower development. Current Biology, 2001, 11, R82-R84.	1.8	8
28	A reverse trend $\hat{a} \in MADS$ functions revealed. Trends in Plant Science, 2000, 5, 315-317.	4.3	23
29	Gene silencing: Plants and viruses fight it out. Current Biology, 1999, 9, R79.	1.8	15
30	Genetic pathways controlling carpel development inArabidopsis thaliana. Journal of Plant Research, 1998, 111, 295-298.	1.2	23
31	Patterns of Petal and Stamen Reduction in Australian Species of Lepidium L. (Brassicaceae). International Journal of Plant Sciences, 1998, 159, 65-74.	0.6	32
32	Plant development: Attractive ovules. Current Biology, 1997, 7, R64-R66.	1.8	9
33	Gene silencing: Cosuppression at a distance. Current Biology, 1997, 7, R793-R796.	1.8	23
34	Plant genetics: Fast flowering. Current Biology, 1996, 6, 122-124.	1.8	1
35	Understanding and controlling plant development. Trends in Biotechnology, 1995, 13, 338-343.	4.9	3
36	Flower Development: Origin of the cauliflower. Current Biology, 1995, 5, 361-363.	1.8	41

#	Article	lF	CITATIONS
37	Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant Journal, 1995, 8, 505-520.	2.8	385
38	An abundant LINE-like element amplified in the genome of Lilium speciosum. Molecular Genetics and Genomics, 1993, 237-237, 97-104.	2.4	116
39	Genes conferring late flowering inArabidopsis thaliana. Genetica, 1993, 90, 147-155.	0.5	83
40	LEAFY controls floral meristem identity in Arabidopsis. Cell, 1992, 69, 843-859.	13.5	1,442
41	terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. Plant Journal, 1992, 2, 103-116.	2.8	322
42	Dispersed repeats in plant genomes. Chromosoma, 1991, 100, 355-359.	1.0	61
43	Interspecies distribution of abundant DNA sequences inLilium. Journal of Molecular Evolution, 1990, 30, 146-154.	0.8	29
44	Early Flower Development in Arabidopsis. Plant Cell, 1990, 2, 755.	3.1	14
45	Arabidopsis thaliana: a Model Plant for Studying the Molecular Basis of Morphogenesis. Functional Plant Biology, 1990, 17, 323.	1.1	8
46	A survey of C-band patterns in chromosomes ofLilium (Liliaceae). Plant Systematics and Evolution, 1989, 163, 53-69.	0.3	62
47	An element with long terminal repeats and its variant arrangements in the genome of Lilium henryi. Molecular Genetics and Genomics, 1989, 215, 349-354.	2.4	44
48	Plant retrotransposon from Lilium henryi is related to Ty3 of yeast and the gypsy group of Drosophila Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 5015-5019.	3.3	154
49	UV-induced DNA repair is not detectable in pre-dictyate oocytes of the mouse. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1988, 208, 115-119.	1.2	9
50	Silver bands in chronic granulocytic leukemia. II. The Philadelphia chromosome. Cancer Genetics and Cytogenetics, 1987, 25, 131-139.	1.0	2
51	An under-methylated region in the spacer of ribosomal RNA genes of Lilium henryi. Plant Molecular Biology, 1986, 6, 33-39.	2.0	20
52	A family of repeated sequences dispersed through the genome of Lilium henryi. Chromosoma, 1985, 92, 149-155.	1.0	16
53	Different replication patterns of chromocentres and C-bands inLilium henryi. Chromosoma, 1985, 93, 49-56.	1.0	2
54	Silver bands in chronic granulocytic leukemia: I. Increased banding associated with blastic transformation. Cancer Genetics and Cytogenetics, 1984, 11, 61-68.	1.0	8

#	Article	IF	CITATIONS
55	Patterns of exchange induced by mitomycin C in C-bands of human chromosomes. I. Relationship to C-band size in chromosomes 1, 9, and 16. Human Genetics, 1982, 62, 342-345.	1.8	5
56	Patterns of exchange induced by mitomycin C in C-bands of human chromosomes. II. High frequency of Y-Y exchange in XYY cells. Human Genetics, 1982, 62, 346-348.	1.8	4
57	DNA extraction during giemsa differentiation of chromatids singly and doubly substituted with BrdU. Chromosoma, 1981, 81, 691-700.	1.0	16
58	Two repeated DNA sequences from the heterochromatic regions of rye (Secale cereale) chromosomes. Chromosoma, 1981, 84, 265-277.	1.0	120
59	Late labelled regions in relation to Q- and C-bands in chromosomes of Lilium longiflorum and L. pardalinum. Chromosoma, 1980, 76, 151-164.	1.0	2
60	Silver staining test of nucleolar suppression in the Lilium hybrid â€~Black Beauty'. Experimental Cell Research, 1980, 129, 481-485.	1.2	9
61	Cytoplasmic DNA Synthesis at Meiotic Prophase in Lilium henryi. Australian Journal of Botany, 1979, 27, 273.	0.3	10
62	DNA loss during C-banding of chromosomes of Lilium longiflorum. Chromosoma, 1978, 68, 59-72.	1.0	12
63	Q-bands in Lilium and their relationship to C-banded heterochromatin. Chromosoma, 1977, 60, 169-178.	1.0	22
64	Action of Rec-3 on Recombination Near the Amination-I Locus of Neurospora Crassa. Australian Journal of Biological Sciences, 1973, 26, 439.	0.5	9
65	A New map of the Amination-1 Locus of Neurospora Crassa, and the Effect of the Recombination-3 Gene. Australian Journal of Biological Sciences, 1973, 26, 1355.	0.5	29
66	Effect of Rec-3 on Polarity of Recombination in the Animation-1 Locus of Neurospora Crassa. Australian Journal of Biological Sciences, 1971, 24, 97.	0.5	7