
Ania C Ulrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7398489/publications.pdf Version: 2024-02-01

ANIA C LIDICH

#	Article	IF	CITATIONS
1	Carbon and Hydrogen Isotopic Fractionation during Anaerobic Biodegradation of Benzene. Applied and Environmental Microbiology, 2003, 69, 191-198.	1.4	159
2	Oil sands naphthenic acids: A review of properties, measurement, and treatment. Chemosphere, 2015, 127, 276-290.	4.2	142
3	Physiological and molecular characterization of anaerobic benzene-degrading mixed cultures. Environmental Microbiology, 2003, 5, 92-102.	1.8	137
4	Metabolites Detected during Biodegradation of13C6-Benzene in Nitrate-Reducing and Methanogenic Enrichment Cultures. Environmental Science & Technology, 2005, 39, 6681-6691.	4.6	112
5	Emissions from oil sands tailings ponds: Review of tailings pond parameters and emission estimates. Journal of Petroleum Science and Engineering, 2015, 127, 490-501.	2.1	98
6	Isotopic Evidence Suggests Different Initial Reaction Mechanisms for Anaerobic Benzene Biodegradation. Environmental Science & Technology, 2008, 42, 8290-8296.	4.6	70
7	In situ biodegradation of naphthenic acids in oil sands tailings pond water using indigenous algae–bacteria consortium. Bioresource Technology, 2015, 187, 97-105.	4.8	65
8	Effect of salt on aerobic biodegradation of petroleum hydrocarbons in contaminated groundwater. Biodegradation, 2009, 20, 27-38.	1.5	41
9	Preparation and characterization of activated carbon from oil sands coke. Fuel, 2012, 92, 69-76.	3.4	41
10	Metal removal from oil sands tailings pond water by indigenous micro-alga. Chemosphere, 2012, 89, 350-354.	4.2	35
11	Optimization of CO2 fixation by Chlorella kessleri using response surface methodology. Chemical Engineering Science, 2015, 127, 31-39.	1.9	33
12	Toward Gender Equity in Critical Care Medicine: A Qualitative Study of Perceived Drivers, Implications, and Strategies*. Critical Care Medicine, 2019, 47, e286-e291.	0.4	32
13	Geochemical interactions between process-affected water from oil sands tailings ponds and North Alberta surficial sediments. Journal of Contaminant Hydrology, 2011, 119, 55-68.	1.6	30
14	Stream invertebrate community structure at Canadian oil sands development is linked to concentration of bitumen-derived contaminants. Science of the Total Environment, 2017, 575, 1005-1013.	3.9	26
15	Kinetic modeling and optimization of carbon dioxide fixation using microalgae cultivated in oil-sands process water. Chemical Engineering Science, 2015, 137, 697-711.	1.9	23
16	Pharmaceuticals in Canadian sewage treatment plant effluents and surface waters: occurrence and environmental risk assessment. Environmental Technology Reviews, 2013, 2, 17-27.	2.1	20
17	Indigenous microbes survive in situ ozonation improving biodegradation of dissolved organic matter in aged oil sands process-affected waters. Chemosphere, 2013, 93, 2748-2755.	4.2	18
18	Indigenous microorganisms residing in oil sands tailings biodegrade residual bitumen. Chemosphere, 2018, 209, 551-559.	4.2	17

ANIA C ULRICH

#	Article	IF	CITATIONS
19	Geochemical Stability of Oil Sands Tailings in Mine Closure Landforms. Minerals (Basel, Switzerland), 2021, 11, 830.	0.8	17
20	Oil sands process affected water sourced Trichoderma harzianum demonstrates capacity for mycoremediation of naphthenic acid fraction compounds. Chemosphere, 2020, 258, 127281.	4.2	16
21	Optimization of CO2 fixation by Chlorella kessleri cultivated in a closed raceway photo-bioreactor. Bioresource Technology, 2015, 194, 144-155.	4.8	15
22	Model naphthenic acids removal by microalgae and Base Mine Lake cap water microbial inoculum. Chemosphere, 2019, 234, 796-805.	4.2	14
23	Partitioning and bioaccumulation of metals from oil sands process affected water in indigenous Parachlorella kessleri. Chemosphere, 2013, 90, 1893-1899.	4.2	13
24	Characterization of the boron, lithium, and strontium isotopic variations of oil sands process-affected water in Alberta, Canada. Applied Geochemistry, 2018, 90, 50-62.	1.4	13
25	Evaluating methods for quantifying cation exchange in mildly calcareous sediments in Northern Alberta. Applied Geochemistry, 2012, 27, 2511-2523.	1.4	11
26	Fate and transport of oil sand process-affected water into the underlying clay till: A field study. Journal of Contaminant Hydrology, 2013, 151, 83-92.	1.6	11
27	Accelerated Dewatering and Detoxification of Oil Sands Tailings Using a Biological Amendment. Journal of Environmental Engineering, ASCE, 2018, 144, .	0.7	11
28	Effect of cold temperature on the rate of natural attenuation of benzene, toluene, ethylbenzene, and the three isomers of xylene (BTEX). Canadian Geotechnical Journal, 2010, 47, 516-527.	1.4	10
29	Limitation of fluorescence spectrophotometry in the measurement of naphthenic acids in oil sands process water. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 429-436.	0.9	10
30	Potential syntrophic associations in anaerobic naphthenic acids biodegrading consortia inferred with microbial interactome networks. Journal of Hazardous Materials, 2020, 397, 122678.	6.5	10
31	Retention and transport of an anaerobic trichloroethene dechlorinating microbial culture in anaerobic porous media. Colloids and Surfaces B: Biointerfaces, 2015, 130, 110-118.	2.5	9
32	Effect of naphtha diluent on greenhouse gases and reduced sulfur compounds emissions from oil sands tailings. Science of the Total Environment, 2017, 598, 916-924.	3.9	8
33	Tolerance and cytotoxicity of naphthenic acids on microorganisms isolated from oil sands process-affected water. Science of the Total Environment, 2019, 695, 133749.	3.9	8
34	Naphthenic acid anaerobic biodegrading consortia enriched from pristine sediments underlying oil sands tailings ponds. Journal of Hazardous Materials, 2020, 394, 122546.	6.5	8
35	Biofilms for Turbidity Mitigation in Oil Sands End Pit Lakes. Microorganisms, 2021, 9, 1443.	1.6	7
36	Impact of lime treatment on tailings dewatering and cap water quality under an oil sands end pit lake scenario. Science of the Total Environment, 2021, 781, 146699.	3.9	6

ANIA C ULRICH

#	Article	lF	CITATIONS
37	Strain and factor selection for carbon dioxide fixation using microalgae cultivated in oil sands process water. Canadian Journal of Chemical Engineering, 2015, 93, 631-639.	0.9	5
38	Comparison of the transport and deposition of <i>Pseudomonas aeruginosa</i> under aerobic and anaerobic conditions. Water Resources Research, 2016, 52, 1127-1139.	1.7	5
39	Turbidity Mitigation in an Oil Sands Pit Lake through pH Reduction and Fresh Water Addition. Journal of Environmental Engineering, ASCE, 2018, 144, .	0.7	5
40	Persulfate Oxidation Coupled with Biodegradation by Pseudomonas fluorescens Enhances Naphthenic Acid Remediation and Toxicity Reduction. Microorganisms, 2021, 9, 1502.	1.6	5
41	Anaerobic Processes. Water Environment Research, 2011, 83, 1285-1332.	1.3	4
42	Anaerobic Processes. Water Environment Research, 2012, 84, 1217-1285.	1.3	4
43	Learning, experiences, and actions towards advancing gender equity in engineering as aspiring men's allyship group. Canadian Journal of Chemical Engineering, 2021, 99, 2124-2137.	0.9	4
44	Anaerobic Processes. Water Environment Research, 2010, 82, 1235-1287.	1.3	3
45	Addition of Tubifex accelerates dewatering of oil sands tailings. Canadian Journal of Civil Engineering, 2016, 43, 1025-1033.	0.7	3
46	Who Is the Rock Miner and Who Is the Hunter? The Use of Heavy-Oxygen Labeled Phosphate (P18O4) to Differentiate between C and P Fluxes in a Benzene-Degrading Consortium. Environmental Science & Technology, 2018, 52, 1773-1786.	4.6	3
47	Indigenous microbial communities in Albertan sediments are capable of anaerobic benzene biodegradation under methanogenic, sulfateâ€reducing, nitrateâ€reducing, and ironâ€reducing redox conditions. Water Environment Research, 2021, 93, 524-534.	1.3	3
48	Effects of Calcium and Aluminum on Particle Settling in an Oil Sands End Pit Lake. Mine Water and the Environment, 2021, 40, 1025-1036.	0.9	3
49	Sulfide Production and Management in Municipal Stormwater Retention Ponds. Journal of Environmental Engineering, ASCE, 2016, 142, 04015071.	0.7	2
50	Environmental risk factors for bacteriological contamination in rural drinking water wells in Samson Cree Nation. Canadian Journal of Civil Engineering, 2018, 45, 99-104.	0.7	2
51	The role of carbonate mineral dissolution in turbidity reduction in an oil sands end pit lake. Chemosphere, 2021, 271, 129876.	4.2	2
52	Anaerobic Processes. Water Environment Research, 2009, 81, 1293-1345.	1.3	1
53	Anaerobic Processes. Water Environment Research, 2013, 85, 1176-1231.	1.3	1
54	Improving engineering properties of mature fine tailings using Tubifex. Canadian Journal of Civil Engineering, 2020, 47, 812-821.	0.7	1

#	Article	IF	CITATIONS
55	Enzyme-Assisted Dewatering of Oil Sands Tailings: Significance of Water Chemistry and Biological Activity. Chemical Engineering Journal, 2022, 437, 135162.	6.6	1