Xianjin Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7398466/publications.pdf Version: 2024-02-01

ΧΙΔΝΙΙΝ ΧΙΔΟ

#	Article	IF	CITATIONS
1	Thermodynamics-guided two-way interlocking DNA cascade system for universal multiplexed mutation detection. Chinese Chemical Letters, 2022, 33, 334-338.	9.0	4
2	Shared-probe system: An accurate, low-cost and general enzyme-assisted DNA probe system for detection of genetic mutation. Chinese Chemical Letters, 2022, 33, 3043-3048.	9.0	4
3	DNA origamiâ€based nanoâ€hunter enriches lowâ€ e bundance point mutations by targeting wild-type gene segments. Chinese Chemical Letters, 2022, 33, 2052-2056.	9.0	3
4	Sensitive detection of alkaline phosphatase based on terminal deoxynucleotidyl transferase and endonuclease IV-assisted exponential signal amplification. Journal of Pharmaceutical Analysis, 2022, 12, 692-697.	5.3	7
5	Evaluation of Sperm DNA Integrity by Mean Number of Sperm DNA Breaks Rather Than Sperm DNA Fragmentation Index. Clinical Chemistry, 2022, 68, 540-549.	3.2	14
6	Engineering surface patterns on nanoparticles: new insights into nano-bio interactions. Journal of Materials Chemistry B, 2022, 10, 2357-2383.	5.8	11
7	A universal probe system for low-abundance point mutation detection based on endonuclease IV. Analyst, The, 2022, 147, 1534-1539.	3.5	1
8	The Off-Target Effect of CRISPR-Cas12a System toward Insertions and Deletions between Target DNA and crRNA Sequences. Analytical Chemistry, 2022, 94, 8596-8604.	6.5	9
9	Sensitive detection of uracil-DNA glycosylase based on AND-gate triggers. Sensors and Actuators B: Chemical, 2022, 368, 132174.	7.8	4
10	A cost-effective detection of low-abundance mutation with DNA three-way junction structure and lambda exonuclease. Chinese Chemical Letters, 2021, 32, 779-782.	9.0	8
11	Safety of lymphocytes immunotherapy during the COVID-19 outbreak in Wuhan, China. Archives of Gynecology and Obstetrics, 2021, 304, 567-569.	1.7	0
12	Guiding-Strand-Controlled DNA Nucleases with Enhanced Specificity and Tunable Kinetics for DNA Mutation Detection. Analytical Chemistry, 2021, 93, 7054-7062.	6.5	4
13	Shortâ€DNA Specific Blocker PCR for Efficient and Simple Enrichment of Cell Free Fetal DNAs with Short Lengths. Chinese Journal of Chemistry, 2021, 39, 2101-2106.	4.9	3
14	Endonuclease IV-Regulated DNAzyme Motor for Universal Single-nucleotide Variation Discrimination. Analytical Chemistry, 2021, 93, 9939-9948.	6.5	11
15	Multifunctional Clip Strand for the Regulation of DNA Strand Displacement and Construction of Complex DNA Nanodevices. ACS Nano, 2021, 15, 11573-11584.	14.6	30
16	Sensitive <scp>DNA</scp> Mutation Detection at Physiological Temperature with Endonuclease <scp>IV</scp> by Inhibiting Its Side Activity. Chinese Journal of Chemistry, 2021, 39, 2477-2482.	4.9	3
17	Development of a background signal suppression probe for 8-oxoguanine DNA glycosylase detection. Analytica Chimica Acta, 2021, 1175, 338741.	5.4	8
18	Self-Internal-Reference Probe System for Control-Free Quantification of Mutation Abundance. Analytical Chemistry, 2021, 93, 13274-13283.	6.5	2

XIANJIN XIAO

#	Article	IF	CITATIONS
19	Versatile Integration of Liquid-Phase Microextraction and Fluorescent Aptamer Beacons: A Synergistic Effect for Bioanalysis. Analytical Chemistry, 2021, 93, 14323-14333.	6.5	4
20	Thermodynamics-Guided Strand-Displacement-Based DNA Probe for Determination of the Average Methylation Levels of Multiple CpG Sites. Analytical Chemistry, 2020, 92, 792-798.	6.5	5
21	Determination of low-abundance single-base point mutations based on endonuclease IV and branch migration system. Analytica Chimica Acta, 2020, 1134, 28-33.	5.4	11
22	An interlocked DNA cascade system for universal probe-based melting curve analysis. Nanoscale, 2020, 12, 20449-20455.	5.6	6
23	A path-choice-based biosensor to detect the activity of the alkaline phosphatase as the switch. Analytica Chimica Acta, 2020, 1135, 64-72.	5.4	12
24	A double-stranded DNA catalyzed strand displacement system for detection of small genetic variations. Chemical Communications, 2020, 56, 14397-14400.	4.1	7
25	Fine and bidirectional regulation of toehold-mediated DNA strand displacement by a wedge-like DNA tool. Chemical Communications, 2020, 56, 8794-8797.	4.1	10
26	Branch migration-based polymerase chain reaction combined with endonuclease IV-assisted target recycling probe/blocker system for detection of low-abundance point mutations. Analyst, The, 2020, 145, 1355-1361.	3.5	5
27	Methylmercury disrupts autophagic flux by inhibiting autophagosome-lysosome fusion in mouse germ cells. Ecotoxicology and Environmental Safety, 2020, 198, 110667.	6.0	13
28	Thermodynamics and kinetics guided probe design for uniformly sensitive and specific DNA hybridization without optimization. Nature Communications, 2019, 10, 4675.	12.8	28
29	Branch migration based selective PCR for DNA mutation enrichment and detection. Chemical Communications, 2019, 55, 8466-8469.	4.1	11
30	Eliminating the secondary structure of targeting strands for enhancement of DNA probe based low-abundance point mutation detection. Analytica Chimica Acta, 2019, 1075, 137-143.	5.4	4
31	Knockdown of long non-coding HOTAIR enhances the sensitivity to progesterone in endometrial cancer by epigenetic regulation of progesterone receptor isoform B. Cancer Chemotherapy and Pharmacology, 2019, 83, 277-287.	2.3	24
32	Methylmercury-induced testis damage is associated with activation of oxidative stress and germ cell autophagy. Journal of Inorganic Biochemistry, 2019, 190, 67-74.	3.5	26
33	Noncanonical substrate preference of lambda exonuclease for 5′-nonphosphate-ended dsDNA and a mismatch-induced acceleration effect on the enzymatic reaction. Nucleic Acids Research, 2018, 46, 3119-3129.	14.5	23
34	DNA terminal structure-mediated enzymatic reaction for ultra-sensitive discrimination of single nucleotide variations in circulating cell-free DNA. Nucleic Acids Research, 2018, 46, e24-e24.	14.5	28
35	Detection of single nucleotide polymorphism by measuring extension kinetics with T7 exonuclease mediated isothermal amplification. Analyst, The, 2018, 143, 116-122.	3.5	19
36	Branch-Migration Based Fluorescent Probe for Highly Sensitive Detection of Mercury. Analytical Chemistry, 2018, 90, 11764-11769.	6.5	32

XIANJIN XIAO

#	Article	IF	CITATIONS
37	A time-dependent fluorescent biosensor for uracil-DNA glycosylase detection based on the uracil inhibition effect towards archaebacterial DNA polymerases. Sensors and Actuators B: Chemical, 2018, 270, 277-282.	7.8	7
38	Small molecule–protein interactions in branch migration thermodynamics: modelling and application in the homogeneous detection of proteins and small molecules. Analyst, The, 2018, 143, 2755-2759.	3.5	4
39	A star-shaped DNA probe based onÂstrand displacement for universal and multiplexed fluorometric detection of genetic variations. Mikrochimica Acta, 2018, 185, 413.	5.0	10
40	Discrimination Cascade Enabled Selective Detection of Single-Nucleotide Mutation. ACS Sensors, 2017, 2, 419-425.	7.8	17
41	A branch-migration based fluorescent probe for straightforward, sensitive and specific discrimination of DNA mutations. Nucleic Acids Research, 2017, 45, e90-e90.	14.5	32
42	Endonuclease IV based competitive DNA probe assay for differentiation of low-abundance point mutations by discriminating stable single-base mismatches. Chemical Communications, 2017, 53, 9422-9425.	4.1	21
43	Single-Stranded DNA Assisted Cell Penetrating Peptide–DNA Conjugation Strategy for Intracellular Imaging of Nucleases. Analytical Chemistry, 2016, 88, 11306-11309.	6.5	11
44	Generation of artificial sequence-specific nucleases via a preassembled inert-template. Chemical Science, 2016, 7, 2051-2057.	7.4	11
45	Enzyme-mediated single-nucleotide variation detection at room temperature with high discrimination factor. Chemical Science, 2015, 6, 1206-1211.	7.4	55
46	Sensitive discrimination of stable mismatched base pairs by an abasic site modified fluorescent probe and lambda exonuclease. Chemical Communications, 2015, 51, 17402-17405.	4.1	15
47	Combination of a modified block PCR and endonuclease IV-based signal amplification system for ultra-sensitive detection of low-abundance point mutations. Methods, 2013, 64, 255-259.	3.8	10
48	Endonuclease IV discriminates mismatches next to the apurinic/apyrimidinic site in DNA strands: constructing DNA sensing platforms with extremely high selectivity. Chemical Communications, 2013, 49, 2819.	4.1	25
49	A universal mismatch-directed signal amplification platform for ultra-selective and sensitive DNA detection under mild isothermal conditions. Chemical Science, 2012, 3, 2257.	7.4	43
50	Ultra-selective and sensitive DNA detection by a universal apurinic/apyrimidinic probe-based endonuclease IV signal amplification system. Chemical Communications, 2012, 48, 1964-1966.	4.1	43