Mihkel Ã-rd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7398281/publications.pdf

Version: 2024-02-01

		932766	887659
17	678	10	17
papers	citations	h-index	g-index
23	23	23	690
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Eukaryotic Linear Motif resource: 2022 release. Nucleic Acids Research, 2022, 50, D497-D508.	6.5	144
2	Multisite phosphorylation by Cdk1 initiates delayed negative feedback to control mitotic transcription. Current Biology, 2022, 32, 256-263.e4.	1.8	7
3	Cdc6 is sequentially regulated by PP2A-Cdc55, Cdc14, and Sic1 for origin licensing in S. cerevisiae. ELife, 2022, 11, .	2.8	6
4	Cdc4 phospho-degrons allow differential regulation of Ame1CENP-U protein stability across the cell cycle. ELife, $2021,10,10$	2.8	6
5	Docking to a Basic Helix Promotes Specific Phosphorylation by G1-Cdk1. International Journal of Molecular Sciences, 2021, 22, 9514.	1.8	2
6	Regulation of trehalase activity by multi-site phosphorylation and 14-3-3 interaction. Scientific Reports, 2021, 11, 962.	1.6	11
7	A new linear cyclin docking motif that mediates exclusively Sâ€phase CDKâ€specific signaling. EMBO Journal, 2021, 40, e105839.	3.5	23
8	The sequence at Spike S1/S2 site enables cleavage by furin and phospho-regulation in SARS-CoV2 but not in SARS-CoV1 or MERS-CoV. Scientific Reports, 2020, 10, 16944.	1.6	125
9	Comprehensive Analysis of G1 Cyclin Docking Motif Sequences that Control CDK Regulatory Potency InÂVivo. Current Biology, 2020, 30, 4454-4466.e5.	1.8	21
10	Proline-Rich Motifs Control G2-CDK Target Phosphorylation and Priming an Anchoring Protein for Polo Kinase Localization. Cell Reports, 2020, 31, 107757.	2.9	16
11	A processive phosphorylation circuit with multiple kinase inputs and mutually diversional routes controls G1/S decision. Nature Communications, 2020, 11, 1836.	5.8	12
12	Detection of Multisite Phosphorylation of Intrinsically Disordered Proteins Using Phos-tag SDS-PAGE. Methods in Molecular Biology, 2020, 2141, 779-792.	0.4	8
13	Multisite phosphorylation code of CDK. Nature Structural and Molecular Biology, 2019, 26, 649-658.	3.6	64
14	Cyclin-Specific Docking Mechanisms Reveal the Complexity of M-CDK Function in the Cell Cycle. Molecular Cell, 2019, 75, 76-89.e3.	4. 5	50
15	How the cell cycle clock ticks. Molecular Biology of the Cell, 2019, 30, 169-172.	0.9	29
16	Multistep phosphorylation systems: tunable components of biological signaling circuits. Molecular Biology of the Cell, 2014, 25, 3456-3460.	0.9	38
17	Multisite phosphorylation networks as signal processors for Cdk1. Nature Structural and Molecular Biology, 2013, 20, 1415-1424.	3.6	112