List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7397356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synaptic dysfunction in early phases of Alzheimer's Disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 417-438.	1.0	27
2	Analysis of mRNA and Protein Levels of CAP2, DLG1 and ADAM10 Genes in Post-Mortem Brain of Schizophrenia, Parkinson's and Alzheimer's Disease Patients. International Journal of Molecular Sciences, 2022, 23, 1539.	1.8	10
3	Disease association of cyclase-associated protein (CAP): Lessons from gene-targeted mice and human genetic studies. European Journal of Cell Biology, 2022, 101, 151207.	1.6	10
4	The development of ADAM10 endocytosis inhibitors for the treatment of Alzheimer's disease. Molecular Therapy, 2022, 30, 2474-2490.	3.7	15
5	The epilepsy-associated protein PCDH19 undergoes NMDA receptor-dependent proteolytic cleavage and regulates the expression of immediate-early genes. Cell Reports, 2022, 39, 110857.	2.9	10
6	ATM rules neurodevelopment and glutamatergic transmission in the hippocampus but not in the cortex. Cell Death and Disease, 2022, 13, .	2.7	5
7	ADAM10 Plasma and CSF Levels Are Increased in Mild Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 2416.	1.8	17
8	Cyclase-associated protein 2 (CAP2) controls MRTF-A localization and SRF activity in mouse embryonic fibroblasts. Scientific Reports, 2021, 11, 4789.	1.6	2
9	Looking at Alzheimer's Disease Pathogenesis from the Nuclear Side. Biomolecules, 2021, 11, 1261.	1.8	3
10	Transcranial Magnetic Stimulation Exerts "Rejuvenation―Effects on Corticostriatal Synapses after Partial Dopamine Depletion. Movement Disorders, 2021, 36, 2254-2263.	2.2	10
11	Anti-GluA3 antibodies in frontotemporal dementia: effects on glutamatergic neurotransmission and synaptic failure. Neurobiology of Aging, 2020, 86, 143-155.	1.5	34
12	CAPt'n of Actin Dynamics: Recent Advances in the Molecular, Developmental and Physiological Functions of Cyclase-Associated Protein (CAP). Frontiers in Cell and Developmental Biology, 2020, 8, 586631.	1.8	23
13	Loss of Ryanodine Receptor 2 impairs neuronal activity-dependent remodeling of dendritic spines and triggers compensatory neuronal hyperexcitability. Cell Death and Differentiation, 2020, 27, 3354-3373.	5.0	25
14	Cyclase-associated protein 2 dimerization regulates cofilin in synaptic plasticity and Alzheimer's disease. Brain Communications, 2020, 2, fcaa086.	1.5	29
15	Proximity ligation assay reveals both pre- and postsynaptic localization of the APP-processing enzymes ADAM10 and BACE1 in rat and human adult brain. BMC Neuroscience, 2020, 21, 6.	0.8	18
16	Dendritic Spines in Alzheimer's Disease: How the Actin Cytoskeleton Contributes to Synaptic Failure. International Journal of Molecular Sciences, 2020, 21, 908.	1.8	65
17	Linking NMDA Receptor Synaptic Retention to Synaptic Plasticity and Cognition. IScience, 2019, 19, 927-939.	1.9	31
18	The Synaptonuclear Messenger RNF10 Acts as an Architect of Neuronal Morphology. Molecular Neurobiology, 2019, 56, 7583-7593.	1.9	12

#	Article	IF	CITATIONS
19	Amyloid-β Oligomers Regulate ADAM10 Synaptic Localization Through Aberrant Plasticity Phenomena. Molecular Neurobiology, 2019, 56, 7136-7143.	1.9	9
20	ADAM10 in Alzheimer's disease: Pharmacological modulation by natural compounds and its role as a peripheral marker. Biomedicine and Pharmacotherapy, 2019, 113, 108661.	2.5	52
21	Synapse-to-nucleus communication: from developmental disorders to Alzheimer's disease. Current Opinion in Neurobiology, 2018, 48, 160-166.	2.0	34
22	Biological, Neuroimaging, and Neurophysiological Markers in Frontotemporal Dementia: Three Faces of the Same Coin. Journal of Alzheimer's Disease, 2018, 62, 1113-1123.	1.2	29
23	Lack of the Actin Capping Protein, Eps8, Affects NMDA-Type Glutamate Receptor Function and Composition. Frontiers in Molecular Neuroscience, 2018, 11, 313.	1.4	7
24	A light-gated potassium channel for sustained neuronal inhibition. Nature Methods, 2018, 15, 969-976.	9.0	47
25	Sex-Specific Features of Microglia from Adult Mice. Cell Reports, 2018, 23, 3501-3511.	2.9	417
26	Fingolimod Limits Acute AÎ ² Neurotoxicity and Promotes Synaptic Versus Extrasynaptic NMDA Receptor Functionality in Hippocampal Neurons. Scientific Reports, 2017, 7, 41734.	1.6	27
27	Intermittent thetaâ€burst stimulation rescues dopamineâ€dependent corticostriatal synaptic plasticity and motor behavior in experimental parkinsonism: Possible role of glial activity. Movement Disorders, 2017, 32, 1035-1046.	2.2	38
28	Synaptic dysfunction in Alzheimer's disease: From the role of amyloid β-peptide to the α-secretase ADAM10. European Journal of Pharmacology, 2017, 817, 30-37.	1.7	29
29	microRNA 221 Targets ADAM10 mRNA and is Downregulated in Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 61, 113-123.	1.2	64
30	ADAM10 as a therapeutic target for brain diseases: from developmental disorders to Alzheimer's disease. Expert Opinion on Therapeutic Targets, 2017, 21, 1017-1026.	1.5	43
31	Ring finger protein 10 is a novel synaptonuclear messenger encoding activation of NMDA receptors in hippocampus. ELife, 2016, 5, e12430.	2.8	39
32	Alzheimer's disease and modern lifestyle: what is the role of stress?. Journal of Neurochemistry, 2015, 134, 795-798.	2.1	29
33	Rabphilin 3A retains NMDA receptors at synaptic sites through interaction with GluN2A/PSD-95 complex. Nature Communications, 2015, 6, 10181.	5.8	59
34	ADAM10 gene expression in the blood cells of Alzheimer's disease patients and mild cognitive impairment subjects. Biomarkers, 2015, 20, 196-201.	0.9	25
35	SAP97-mediated ADAM10 trafficking from Golgi outposts depends on PKC phosphorylation. Cell Death and Disease, 2014, 5, e1547-e1547.	2.7	56
36	ADAM10 in Synaptic Physiology and Pathology. Neurodegenerative Diseases, 2014, 13, 72-74.	0.8	24

#	Article	IF	CITATIONS
37	P3-036: SAP97 DRIVES ADAM10 FROM GOLGI OUTPOSTS TO THE SYNAPSE THROUGH A PKC-DEPENDENT PHOSPHORYLATION PROCESS. , 2014, 10, P640-P641.		0
38	O2-06-02: DEVELOPMENT OF INNOVATIVE TOOLS FOR ALZHEIMER'S DISEASE THERAPY. , 2014, 10, P174-P175.		0
39	Trafficking in neurons: Searching for new targets for Alzheimer's disease future therapies. European Journal of Pharmacology, 2013, 719, 84-106.	1.7	24
40	Aβ leads to Ca2+ signaling alterations and transcriptional changes in glial cells. Neurobiology of Aging, 2013, 34, 511-522.	1.5	76
41	Modeling Alzheimer's disease: from past to future. Frontiers in Pharmacology, 2013, 4, 77.	1.6	40
42	Endocytosis of synaptic ADAM10 in neuronal plasticity and Alzheimer's disease. Journal of Clinical Investigation, 2013, 123, 2523-2538.	3.9	96
43	The neuropeptide <u>PACAP38</u> induces dendritic spine remodeling through ADAM10/N-Cadherin signaling pathway. Journal of Cell Science, 2012, 125, 1401-6.	1.2	29
44	SAP97-mediated local trafficking is altered in Alzheimer disease patients' hippocampus. Neurobiology of Aging, 2012, 33, 422.e1-422.e10.	1.5	46
45	Synaptic Dysfunction in Alzheimer's Disease. Advances in Experimental Medicine and Biology, 2012, 970, 573-601.	0.8	94
46	Searching for new animal models of Alzheimer′s disease. European Journal of Pharmacology, 2010, 626, 57-63.	1.7	44
47	Blood cell markers in Alzheimer Disease: Amyloid Precursor Protein form ratio in platelets. Experimental Gerontology, 2010, 45, 53-56.	1.2	76
48	Synaptic Localization and Activity of ADAM10 Regulate Excitatory Synapses through N-Cadherin Cleavage. Journal of Neuroscience, 2010, 30, 16343-16355.	1.7	102
49	An Arginine Stretch Limits ADAM10 Exit from the Endoplasmic Reticulum. Journal of Biological Chemistry, 2010, 285, 10376-10384.	1.6	53
50	Blocking ADAM10 synaptic trafficking generates a model of sporadic Alzheimer's disease. Brain, 2010, 133, 3323-3335.	3.7	71
51	Postsynaptic density–membrane associated guanylate kinase proteins (PSD–MAGUKs) and their role in CNS disorders. Neuroscience, 2009, 158, 324-333.	1.1	64
52	Amyloid flirting with synaptic failure: Towards a comprehensive view of Alzheimer's disease pathogenesis. European Journal of Pharmacology, 2008, 585, 109-118.	1.7	52
53	Modulatory effect of acetyl-l-carnitine on amyloid precursor protein metabolism in hippocampal neurons. European Journal of Pharmacology, 2008, 597, 51-56.	1.7	24
54	Combined 5-HT1A and 5-HT1B receptor agonists for the treatment of L-DOPA-induced dyskinesia. Brain, 2008, 131, 3380-3394.	3.7	223

#	Article	IF	CITATIONS
55	Synapse-Associated Protein-97 Mediates Â-Secretase ADAM10 Trafficking and Promotes Its Activity. Journal of Neuroscience, 2007, 27, 1682-1691.	1.7	164
56	SAP97 Directs the Localization of Kv4.2 to Spines in Hippocampal Neurons. Journal of Biological Chemistry, 2007, 282, 28691-28699.	1.6	40
57	Dual role of CaMKII-dependent SAP97 phosphorylation in mediating trafficking and insertion of NMDA receptor subunit NR2A. Journal of Neurochemistry, 2007, 100, 1032-1046.	2.1	67
58	Artificial neural networks allow the use of simultaneous measurements of Alzheimer disease markers for early detection of the disease. Journal of Translational Medicine, 2005, 3, 30.	1.8	30
59	Platelet APP, ADAM 10 and BACE alterations in the early stages of Alzheimer disease. Neurology, 2004, 62, 498-501.	1.5	159
60	Acetylcholinesterase inhibitors increase ADAM10 activity by promoting its trafficking in neuroblastoma cell lines. Journal of Neurochemistry, 2004, 90, 1489-1499.	2.1	129
61	Predicting Cognitive Decline in Alzheimer Disease. Alzheimer Disease and Associated Disorders, 2004, 18, 32-34.	0.6	23
62	α-Secretase ADAM10 as Well as αAPPs Is Reduced in Platelets and CSF of Alzheimer Disease Patients. Molecular Medicine, 2002, 8, 67-74.	1.9	215
63	[alpha]-Secretase ADAM10 as well as [alpha]APPs is reduced in platelets and CSF of Alzheimer disease patients. Molecular Medicine, 2002, 8, 67-74.	1.9	88