Giovanni Losurdo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7397347/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3. Classical and Quantum Gravity, 2022, 39, 045006.	1.5	20
2	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
3	LIGO, VIRGO, and KAGRA as the International Gravitational Wave Network. , 2022, , 1205-1225.		0
4	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
5	Gravitational-wave physics and astronomy in the 2020s and 2030s. Nature Reviews Physics, 2021, 3, 344-366.	11.9	96
6	LIGO, VIRGO, and KAGRA as the International Gravitational Wave Network. , 2021, , 1-21.		1
7	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	1.9	9
8	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
9	Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. Physical Review Letters, 2020, 125, 131101.	2.9	35
10	Site-selection criteria for the Einstein Telescope. Review of Scientific Instruments, 2020, 91, 094504.	0.6	32
11	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010.	0.3	9
12	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	3.0	145
13	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	2.9	254
14	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
15	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq1 1	0.784314	rgβT /Overlo
16	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.1	9
17	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	2.9	85
18	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2

#	Article	IF	CITATIONS
19	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	1.5	98
20	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	2.9	194
21	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	2.9	84
22	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	1.6	131
23	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
24	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	1.6	46
25	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	13.7	674
26	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
27	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
28	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	3.0	189
29	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	3.0	156
30	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
31	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	0.5	6
32	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	3.0	73
33	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	3.0	968
34	Advanced Virgo Status. , 2017, , .		0
35	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
36	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427

#	Article	IF	CITATIONS
37	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	3.0	230
38	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	3.0	210
39	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	1.6	35
40	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
41	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	1.6	102
42	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	1.6	29
43	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	1.6	17
44	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	1.6	32
45	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	1.6	315
46	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	1.6	14
47	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	1.6	92
48	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	2.9	269
49	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	2.9	466
50	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	3.0	44
51	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	1.6	119
52	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	2.9	1,224
53	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	2.9	673
54	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701

#	Article	IF	CITATIONS
55	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	3.0	633
56	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
57	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
58	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	1.6	37
59	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	1.6	39
60	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	1.6	47
61	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	1.5	1,029
62	The Advanced Virgo detector. Journal of Physics: Conference Series, 2015, 610, 012014.	0.3	27
63	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	1.6	66
64	Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 2015, 32, 024001.	1.5	2,530
65	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. Classical and Quantum Gravity, 2014, 31, 165013.	1.5	10
66	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	3.0	57
67	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	1.6	60
68	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	2.9	68
69	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	2.9	86
70	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	1.6	29
71	Progress and challenges in advanced ground-based gravitational-wave detectors. General Relativity and Gravitation, 2014, 46, 1.	0.7	2
72	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	1.5	34

#	Article	IF	CITATIONS
73	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	1.6	125
74	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	1.5	21
75	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	1.5	42
76	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	1.6	28
77	Search for Gravitational Waves Associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>i³</mml:mi>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters. 2014. 113. 011102.</mml:math 	2.9	32
78	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	1.6	35
79	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	1.6	29
80	Towards Gravitational Wave Astronomy. Astrophysics and Space Science Library, 2014, , 1-20.	1.0	0
81	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	1.6	92
82	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	1.6	31
83	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	1.9	32
84	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. Classical and Quantum Gravity, 2013, 30, 055017.	1.5	11
85	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	1.6	91
86	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	1.6	132
87	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	1.6	65
88	A tool for measuring the bending length in thin wires. Review of Scientific Instruments, 2013, 84, 033904.	0.6	2
89	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005.	1.5	5
90	Ground-based gravitational wave interferometric detectors of the first and second generation: an overview. Classical and Quantum Gravity, 2012, 29, 124005.	1.5	5

#	Article	IF	CITATIONS
91	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	3.0	62
92	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	1.5	73
93	Status of the commissioning of the Virgo interferometer. , 2012, , .		1
94	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	3
95	Noise monitor tools and their application to Virgo data. Journal of Physics: Conference Series, 2012, 363, 012024.	0.3	2
96	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	2.1	75
97	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	1.6	104
98	The NoEMi (Noise Frequency Event Miner) framework. Journal of Physics: Conference Series, 2012, 363, 012037.	0.3	12
99	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	1.6	107
100	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	1.6	48
101	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	1.6	43
102	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	1.6	185
103	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	1.6	66
104	Publisher's Note: Search for gravitational waves from binary black hole inspiral, merger, and ringdown [Phys. Rev. D83, 122005 (2011)]. Physical Review D, 2012, 85, .	1.6	0
105	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	2
106	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	0.5	257
107	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	1.5	355
108	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	2.1	84

#	Article	IF	CITATIONS
109	A THERMAL COMPENSATION SYSTEM FOR THE GRAVITATIONAL WAVE DETECTOR VIRGO. , 2012, , .		2
110	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, 2011, 83, .	1.6	85
111	THE VIRGO INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION. International Journal of Modern Physics D, 2011, 20, 2075-2079.	0.9	4
112	The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer. Journal of Low Frequency Noise Vibration and Active Control, 2011, 30, 63-79.	1.3	28
113	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	3.0	55
114	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	1.6	89
115	Automatic Alignment system during the second science run of the Virgo interferometer. Astroparticle Physics, 2011, 34, 327-332.	1.9	6
116	Performance of the Virgo interferometer longitudinal control system during the second science run. Astroparticle Physics, 2011, 34, 521-527.	1.9	13
117	Calibration and sensitivity of the Virgo detector during its second science run. Classical and Quantum Gravity, 2011, 28, 025005.	1.5	85
118	A state observer for the Virgo inverted pendulum. Review of Scientific Instruments, 2011, 82, 094502.	0.6	8
119	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	2.9	94
120	Status of the Virgo project. Classical and Quantum Gravity, 2011, 28, 114002.	1.5	171
121	Commissioning status of the Virgo interferometer. Classical and Quantum Gravity, 2010, 27, 149801.	1.5	7
122	Tools for noise characterization in Virgo. Journal of Physics: Conference Series, 2010, 243, 012004.	0.3	0
123	Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1. Journal of Physics: Conference Series, 2010, 228, 012015.	0.3	8
124	The dynamics of monolithic suspensions for advanced detectors: A 3-segment model. Journal of Physics: Conference Series, 2010, 228, 012017.	0.3	7
125	Silicate bonding properties: Investigation through thermal conductivity measurements. Journal of Physics: Conference Series, 2010, 228, 012019.	0.3	3
126	Status and perspectives of the Virgo gravitational wave detector. Journal of Physics: Conference Series, 2010, 203, 012074.	0.3	29

#	Article	IF	CITATIONS
127	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	1.6	60
128	Performances of the Virgo interferometer longitudinal control system. Astroparticle Physics, 2010, 33, 75-80.	1.9	10
129	Measurements of Superattenuator seismic isolation by Virgo interferometer. Astroparticle Physics, 2010, 33, 182-189.	1.9	62
130	Automatic Alignment for the first science run of the Virgo interferometer. Astroparticle Physics, 2010, 33, 131-139.	1.9	11
131	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	1.6	155
132	Noise from scattered light in Virgo's second science run data. Classical and Quantum Gravity, 2010, 27, 194011.	1.5	59
133	Mechanical characterization of †uncoated' and †Ta 2 O 5 -single-layer-coated' SiO 2 substrates: result from GeNS suspension, and the CoaCh project. Classical and Quantum Gravity, 2010, 27, 084031.	^S 1.5	8
134	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	1.6	111
135	In-vacuum Faraday isolation remote tuning. Applied Optics, 2010, 49, 4780.	2.1	8
136	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	1.6	107
137	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	1.5	956
138	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90
139	Control of the laser frequency of the Virgo gravitational wave interferometer with an in-loop relative frequency stability of 1.0 × 10â^21 on a 100 ms time scale. , 2009, , .		4
140	A "gentle―nodal suspension for measurements of the acoustic attenuation in materials. Review of Scientific Instruments, 2009, 80, 053904.	0.6	60
141	Laser with an in-loop relative frequency stability of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:mn> 1.0 </mml:mn> <mml:mo> × </mml:mo> <mml:msup> <mml:mrow> <mml a 100-ms time scale for gravitational-wave detection. Physical Review A. 2009. 79</mml </mml:mrow></mml:msup></mml:mrow></mml:math 	: 1.0 :mn>10 <td>mml:mn><</td>	mml:mn><
142	Cleaning the Virgo sampled data for the search of periodic sources of gravitational waves. Classical and Quantum Gravity, 2009, 26, 204002.	1.5	10
143	Gravitational wave burst search in the Virgo C7 data. Classical and Quantum Gravity, 2009, 26, 085009.	1.5	16
144	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	13.7	303

#	Article	IF	CITATIONS
145	Lock acquisition of the Virgo gravitational wave detector. Astroparticle Physics, 2008, 30, 29-38.	1.9	16
146	In-vacuum optical isolation changes by heating in a Faraday isolator. Applied Optics, 2008, 47, 5853.	2.1	13
147	The Real-Time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. IEEE Transactions on Nuclear Science, 2008, 55, 302-310.	1.2	7
148	First joint gravitational wave search by the AURICA–EXPLORER–NAUTILUS–Virgo Collaboration. Classical and Quantum Gravity, 2008, 25, 205007.	1.5	13
149	The Virgo 3 km interferometer for gravitational wave detection. Journal of Optics, 2008, 10, 064009.	1.5	31
150	A cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo. Classical and Quantum Gravity, 2008, 25, 114046.	1.5	0
151	Search for gravitational waves associated with GRB 050915a using the Virgo detector. Classical and Quantum Gravity, 2008, 25, 225001.	1.5	28
152	Status of Virgo. Classical and Quantum Gravity, 2008, 25, 114045.	1.5	148
153	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	1.5	26
154	Virgo status. Classical and Quantum Gravity, 2008, 25, 184001.	1.5	116
155	Noise studies during the first Virgo science run and after. Classical and Quantum Gravity, 2008, 25, 184003.	1.5	8
156	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. IEEE Transactions on Nuclear Science, 2008, 55, 225-232.	1.2	5
157	VIRGO: a large interferometer for gravitational wave detection started its first scientific run. Journal of Physics: Conference Series, 2008, 120, 032007.	0.3	15
158	Interferometric detectors of gravitational waves on Earth: the next generations. Journal of Physics: Conference Series, 2008, 110, 062016.	0.3	1
159	Methods of gravitational wave detection in the VIRGO Interferometer. , 2007, , .		1
160	Improving the timing precision for inspiral signals found by interferometric gravitational wave detectors. Classical and Quantum Gravity, 2007, 24, S617-S625.	1.5	10
161	Gravitational waves by gamma-ray bursts and the Virgo detector: the case of GRB 050915a. Classical and Quantum Gravity, 2007, 24, S671-S679.	1.5	19
162	Coincidence analysis between periodic source candidates in C6 and C7 Virgo data. Classical and Quantum Gravity, 2007, 24, S491-S499.	1.5	13

#	Article	IF	CITATIONS
163	Analysis of noise lines in the Virgo C7 data. Classical and Quantum Gravity, 2007, 24, S433-S443.	1.5	9
164	Data quality studies for burst analysis of Virgo data acquired during Weekly Science Runs. Classical and Quantum Gravity, 2007, 24, S415-S422.	1.5	4
165	Status of Virgo detector. Classical and Quantum Gravity, 2007, 24, S381-S388.	1.5	56
166	Status of coalescing binaries search activities in Virgo. Classical and Quantum Gravity, 2007, 24, 5767-5775.	1.5	9
167	Measurement of the optical parameters of the Virgo interferometer. Applied Optics, 2007, 46, 3466.	2.1	13
168	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. , 2007, , .		0
169	The Real-time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. , 2007, , .		1
170	Experimental upper limit on the estimated thermal noise at low frequencies in a gravitational wave detector. Physical Review D, 2007, 76, .	1.6	2
171	The Virgo interferometric gravitational antenna. Optics and Lasers in Engineering, 2007, 45, 478-487.	2.0	7
172	Status of Virgo. Journal of Physics: Conference Series, 2006, 39, 32-35.	0.3	3
173	Considerations on collected data with the Low Frequency Facility experiment. Journal of Physics: Conference Series, 2006, 32, 346-352.	0.3	3
174	Virgo upgrade investigations. Journal of Physics: Conference Series, 2006, 32, 223-229.	0.3	21
175	A parallel in-time analysis system for Virgo Journal of Physics: Conference Series, 2006, 32, 35-43.	0.3	0
176	Environmental noise studies in Virgo. Journal of Physics: Conference Series, 2006, 32, 80-88.	0.3	4
177	Length Sensing and Control in the Virgo Gravitational Wave Interferometer. IEEE Transactions on Instrumentation and Measurement, 2006, 55, 1985-1995.	2.4	5
178	The status of coalescing binaries search code in Virgo, and the analysis of C5 data. Classical and Quantum Gravity, 2006, 23, S187-S196.	1.5	7
179	Normal/independent noise in VIRGO data. Classical and Quantum Gravity, 2006, 23, S829-S836.	1.5	0
180	The variable finesse locking technique. Classical and Quantum Gravity, 2006, 23, S85-S89.	1.5	22

#	Article	IF	CITATIONS
181	The Virgo automatic alignment system. Classical and Quantum Gravity, 2006, 23, S91-S101.	1.5	16
182	Measurement of the thermoelastic properties of crystalline Si fibres. Classical and Quantum Gravity, 2006, 23, S277-S285.	1.5	5
183	The status of VIRGO. Classical and Quantum Gravity, 2006, 23, S63-S69.	1.5	83
184	Testing Virgo burst detection tools on commissioning run data. Classical and Quantum Gravity, 2006, 23, S197-S205.	1.5	3
185	First characterization of silicon crystalline fibers produced with the μ-pulling technique for future gravitational wave detectors. Review of Scientific Instruments, 2006, 77, 044502.	0.6	15
186	The Virgo status. Classical and Quantum Gravity, 2006, 23, S635-S642.	1.5	179
187	Experimental evidence for an optical spring. Physical Review A, 2006, 74, .	1.0	19
188	Measurement of the seismic attenuation performance of the VIRGO Superattenuator. Astroparticle Physics, 2005, 23, 557-565.	1.9	79
189	Wavelet Tests for the Detection of Transients in the VIRGO Interferometric Gravitational Wave Detector. IEEE Transactions on Instrumentation and Measurement, 2005, 54, 151-162.	2.4	2
190	Virgo and the worldwide search for gravitational waves. AIP Conference Proceedings, 2005, , .	0.3	2
191	The Virgo Detector. AIP Conference Proceedings, 2005, , .	0.3	10
192	A simple line detection algorithm applied to Virgo data. Classical and Quantum Gravity, 2005, 22, S1189-S1196.	1.5	6
193	A first study of environmental noise coupling to the Virgo interferometer. Classical and Quantum Gravity, 2005, 22, S1069-S1077.	1.5	4
194	Virgo status and commissioning results. Classical and Quantum Gravity, 2005, 22, S185-S191.	1.5	2
195	Status of Virgo. Classical and Quantum Gravity, 2005, 22, S869-S880.	1.5	54
196	NAP: a tool for noise data analysis. Application to Virgo engineering runs. Classical and Quantum Gravity, 2005, 22, S1041-S1049.	1.5	7
197	Testing the detection pipelines for inspirals with Virgo commissioning run C4 data. Classical and Quantum Gravity, 2005, 22, S1139-S1148.	1.5	5
198	Search for inspiralling binary events in the Virgo Engineering Run data. Classical and Quantum Gravity, 2004, 21, S709-S716.	1.5	13

#	Article	IF	CITATIONS
199	First results of the low frequency facility experiment. Classical and Quantum Gravity, 2004, 21, S1099-S1106.	1.5	4
200	Monocrystalline fibres for low thermal noise suspension in advanced gravitational wave detectors. Classical and Quantum Gravity, 2004, 21, S1009-S1013.	1.5	8
201	The VIRGO large mirrors: a challenge for low loss coatings. Classical and Quantum Gravity, 2004, 21, S935-S945.	1.5	30
202	Status of VIRGO. Classical and Quantum Gravity, 2004, 21, S385-S394.	1.5	89
203	Results of the Virgo central interferometer commissioning. Classical and Quantum Gravity, 2004, 21, S395-S402.	1.5	5
204	The last-stage suspension of the mirrors for the gravitational wave antenna Virgo. Classical and Quantum Gravity, 2004, 21, S425-S432.	1.5	5
205	Properties of seismic noise at the Virgo site. Classical and Quantum Gravity, 2004, 21, S433-S440.	1.5	25
206	A first test of a sine-Hough method for the detection of pulsars in binary systems using the E4 Virgo engineering run data. Classical and Quantum Gravity, 2004, 21, S717-S727.	1.5	1
207	Thermal noise reduction for present and future gravitational wave detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 518, 240-243.	0.7	13
208	Sensitivity of the Low Frequency Facility experiment around 10ÂHz. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 322, 1-9.	0.9	4
209	First locking of the Virgo central area interferometer with suspension hierarchical control. Astroparticle Physics, 2004, 20, 629-640.	1.9	19
210	The commissioning of the central interferometer of the Virgo gravitational wave detector. Astroparticle Physics, 2004, 21, 1-22.	1.9	22
211	Lock acquisition of the central interferometer of the gravitational wave detector Virgo. Astroparticle Physics, 2004, 21, 465-477.	1.9	4
212	A local control system for the test masses of the Virgo gravitational wave detector. Astroparticle Physics, 2004, 20, 617-628.	1.9	22
213	Status of VIRGO. , 2004, 5500, 58.		2
214	Low-loss coatings for the VIRGO large mirrors. , 2004, , .		14
215	STATUS OF THE VIRGO EXPERIMENT. , 2004, , .		0
216	Status report of the low frequency facility experiment, Virgo R&D. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 318, 199-204.	0.9	6

#	Article	IF	CITATIONS
217	The low frequency facility Fabry–Perot cavity used as a speed-meter. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 316, 1-9.	0.9	6
218	Status of VIRGO. Classical and Quantum Gravity, 2003, 20, S609-S616.	1.5	9
219	Data analysis methods for non-Gaussian, nonstationary and nonlinear features and their application to VIRGO. Classical and Quantum Gravity, 2003, 20, S915-S924.	1.5	7
220	Testing the performance of a blind burst statistic. Classical and Quantum Gravity, 2003, 20, S821-S828.	1.5	1
221	Last stage control and mechanical transfer function measurement of the VIRGO suspensions. Review of Scientific Instruments, 2002, 73, 2143-2149.	0.6	14
222	Status of the low frequency facility experiment. Classical and Quantum Gravity, 2002, 19, 1675-1682.	1.5	3
223	The inertial damping of the VIRGO superattenuator and the residual motion of the mirror. Classical and Quantum Gravity, 2002, 19, 1631-1637.	1.5	12
224	The present status of the VIRGO Central Interferometer*. Classical and Quantum Gravity, 2002, 19, 1421-1428.	1.5	85
225	The linear variable differential transformer (LVDT) position sensor for gravitational wave interferometer low-frequency controls. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 489, 570-576.	0.7	56
226	On-line power spectra identification and whitening for the noise in interferometric gravitational wave detectors. Classical and Quantum Gravity, 2001, 18, 1727-1751.	1.5	45
227	Noise parametric identification and whitening for LIGO 40-m interferometer data. Physical Review D, 2001, 64, .	1.6	21
228	Inertial control of the mirror suspensions of the VIRGO interferometer for gravitational wave detection. Review of Scientific Instruments, 2001, 72, 3653-3661.	0.6	52
229	Measurement of the VIRGO superattenuator performance for seismic noise suppression. Review of Scientific Instruments, 2001, 72, 3643-3652.	0.6	89
230	Measurement of the transfer function of the steering filter of the Virgo super attenuator suspension. Review of Scientific Instruments, 2001, 72, 3635-3642.	0.6	14
231	Astrophysical sources of gravitational waves. Nuclear Physics, Section B, Proceedings Supplements, 2000, 85, 248-251.	O.5	Ο
232	The Low Frequency Facility, R&D experiment of the VIRGO project. Journal of Optics B: Quantum and Semiclassical Optics, 2000, 2, 172-178.	1.4	5
233	An inverted pendulum preisolator stage for the VIRGO suspension system. Review of Scientific Instruments, 1999, 70, 2507-2515.	0.6	82
234	Initial results from a long-period conical pendulum vibration isolator with application for gravitational wave detection. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 263, 9-14.	0.9	23

#	Article	IF	CITATIONS
235	Performances of an ultralow frequency vertical pre-isolator for the VIRGO seismic attenuation chains. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 420, 316-335.	0.7	13
236	Plane parallel mirrors Fabry-Perot cavity to improve Virgo superattenuators. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 243, 187-194.	0.9	11
237	The creep problem in the VIRGO suspensions: a possible solution using Maraging steel. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 404, 455-469.	0.7	36
238	Seismic isolation by mechanical filters at very low frequencies. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 409, 480-483.	0.7	7
239	Air bake-out to reduce hydrogen outgassing from stainless steel. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 188-193.	0.9	32
240	Status and noise limit of the VIRGO antenna. , 1998, , .		1
241	Ground tilt seismic spectrum measured with a new high sensitivity rotational accelerometer. Review of Scientific Instruments, 1997, 68, 1889-1893.	0.6	15
242	Mechanical filters for the gravitational waves detector VIRGO: Performance of a two-stage suspension. Review of Scientific Instruments, 1997, 68, 3904-3906.	0.6	7
243	The VIRGO interferometer for gravitational wave detection. Nuclear Physics, Section B, Proceedings Supplements, 1997, 54, 167-175.	0.5	50
244	Displacement measurement in VIRGO super attenuators with a suspended fabry-perot interferometer. Nuclear Physics, Section B, Proceedings Supplements, 1997, 54, 179-183.	0.5	1
245	Mechanical shot noise induced by creep in suspension devices. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 237, 21-27.	0.9	24
246	Extending the VIRGO gravitational wave detection band down to a few Hz: metal blade springs and magnetic antisprings. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 394, 397-408.	0.7	46
247	Status of the VIRGO experiment. Nuclear Physics, Section B, Proceedings Supplements, 1996, 48, 107-109.	0.5	7
248	Seismic vibrations mechanical filters for the gravitational waves detector VIRGO. Review of Scientific Instruments, 1996, 67, 2899-2902.	0.6	34
249	Improvements on the test mass suspensions of the VIRGO laser interferometer gravitational wave detector. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 199, 307-314.	0.9	2
250	Low noise wideband accelerometer using an inductive displacement sensor. Review of Scientific Instruments, 1995, 66, 2672-2676.	0.6	21
251	Improvements at low frequency in the interferometric test of the suspensions of the Virgo gravitational wave antenna. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 184, 179-183.	0.9	2
252	Test of an interferometric sapphire transducer with the super attenuator of the VIRGO gravitational wave antenna. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 189, 141-144.	0.9	0