
Grégory Pourié

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7397242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Behavioral profile of vitamin B12 deficiency: A reflection of impaired brain development, neuronal stress and altered neuroplasticity. Vitamins and Hormones, 2022, 119, 377-404.	0.7	3
2	Glucocorticoid Receptor Activation Restores Learning Memory by Modulating Hippocampal Plasticity in a Mouse Model of Brain Vitamin B12 Deficiency. Molecular Neurobiology, 2021, 58, 1024-1035.	1.9	7
3	The Fate of Transplanted Olfactory Progenitors Is Conditioned by the Cell Phenotypes of the Receiver Brain Tissue in Cocultures. International Journal of Molecular Sciences, 2020, 21, 7249.	1.8	4
4	The Stimulation of Neurogenesis Improves the Cognitive Status of Aging Rats Subjected to Gestational and Perinatal Deficiency of B9–12 Vitamins. International Journal of Molecular Sciences, 2020, 21, 8008.	1.8	7
5	Methyl Donor Deficiency during Gestation and Lactation in the Rat Affects the Expression of Neuropeptides and Related Receptors in the Hypothalamus. International Journal of Molecular Sciences, 2019, 20, 5097.	1.8	10
6	SIRT1 activation rescues the mislocalization of RNA-binding proteins and cognitive defects induced by inherited cobalamin disorders. Metabolism: Clinical and Experimental, 2019, 101, 153992.	1.5	23
7	Developmental Impairments in a Rat Model of Methyl Donor Deficiency: Effects of a Late Maternal Supplementation with Folic Acid. International Journal of Molecular Sciences, 2019, 20, 973.	1.8	20
8	Nâ€homocysteinylation of tau and MAP1 is increased in autopsy specimens of Alzheimer's disease and vascular dementia. Journal of Pathology, 2019, 248, 291-303.	2.1	35
9	Brain Susceptibility to Methyl Donor Deficiency: From Fetal Programming to Aging Outcome in Rats. International Journal of Molecular Sciences, 2019, 20, 5692.	1.8	11
10	Late Maternal Folate Supplementation Rescues from Methyl Donor Deficiency-Associated Brain Defects by Restoring Let-7 and miR-34 Pathways. Molecular Neurobiology, 2017, 54, 5017-5033.	1.9	35
11	Foetal programming by methyl donor deficiency produces steato-hepatitis in rats exposed to high fat diet. Scientific Reports, 2016, 6, 37207.	1.6	15
12	Folate- and vitamin B ₁₂ –deficient diet during gestation and lactation alters cerebellar synapsin expression <i>via</i> impaired influence of estrogen nuclear receptor α. FASEB Journal, 2015, 29, 3713-3725.	0.2	33
13	Ghrelin, neuropeptide Y, and other feeding-regulatory peptides active in the hippocampus: role in learning and memory. Nutrition Reviews, 2013, 71, 541-561.	2.6	64
14	Early methyl donor deficiency produces severe gastritis in mothers and offspring through <i>N</i> â€homocysteinylation of cytoskeleton proteins, cellular stress, and inflammation. FASEB Journal, 2013, 27, 2185-2197.	0.2	19
15	Homocysteinylation of neuronal proteins contributes to folate deficiencyâ€associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells. FASEB Journal, 2012, 26, 3980-3992.	0.2	66
16	Non-Injurious Neonatal Hypoxia Confers Resistance to Brain Senescence in Aged Male Rats. PLoS ONE, 2012, 7, e48828.	1.1	17
17	Differentiation and neural integration of hippocampal neuronal progenitors: Signaling pathways sequentially involved. Hippocampus, 2010, 20, 949-961.	0.9	17
18	Conditioning-like Brief Neonatal Hypoxia Improves Cognitive Function and Brain Tissue Properties with Marked Gender Dimorphism in Adult Rats. Seminars in Perinatology, 2010, 34, 193-200.	1.1	17

#	Article	IF	CITATIONS
19	Enhancement of spatial learning by predator odor in mice: Involvement of amygdala and hippocampus. Neurobiology of Learning and Memory, 2010, 93, 196-202.	1.0	30
20	Methyl Donor Deficiency Affects Fetal Programming of Gastric Ghrelin Cell Organization and Function in the Rat. American Journal of Pathology, 2010, 176, 270-277.	1.9	32
21	Histopathological alterations and functional brain deficits after transient hypoxia in the newborn rat pup: a long term follow-up. Neurobiology of Disease, 2003, 14, 265-278.	2.1	38