Onintza Sagredo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7397145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preclinical investigation of β-caryophyllene as a therapeutic agent in an experimental murine model of Dravet syndrome. Neuropharmacology, 2022, 205, 108914.	2.0	5
2	Possible therapeutic applications of cannabis in the neuropsychopharmacology field. European Neuropsychopharmacology, 2020, 36, 217-234.	0.3	24
3	Neuropathological Characterization of a Dravet Syndrome Knock-In Mouse Model Useful for Investigating Cannabinoid Treatments. Frontiers in Molecular Neuroscience, 2020, 13, 602801.	1.4	13
4	Chapter 2. Phytocannabinoids Versus Endocannabinoids. A Modern View of the Endocannabinoid System. RSC Drug Discovery Series, 2020, , 10-47.	0.2	0
5	Cannabinoid signalling in the immature brain: Encephalopathies and neurodevelopmental disorders. Biochemical Pharmacology, 2018, 157, 85-96.	2.0	16
6	Effects of a Sativex-Like Combination of Phytocannabinoids on Disease Progression in R6/2 Mice, an Experimental Model of Huntington's Disease. International Journal of Molecular Sciences, 2017, 18, 684.	1.8	20
7	A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington's disease. Journal of Neurology, 2016, 263, 1390-1400.	1.8	105
8	Analysis of endocannabinoid signaling elements and related proteins in lymphocytes of patients with Dravet syndrome. Pharmacology Research and Perspectives, 2016, 4, e00220.	1.1	13
9	Neuroprotective Properties of Cannabigerol in Huntington's Disease: Studies in R6/2 Mice and 3-Nitropropionate-lesioned Mice. Neurotherapeutics, 2015, 12, 185-199.	2.1	92
10	A restricted population of CB ₁ cannabinoid receptors with neuroprotective activity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8257-8262.	3.3	136
11	Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid?. British Journal of Clinical Pharmacology, 2013, 75, 323-333.	1.1	254
12	The inhibition of 2-arachidonoyl-glycerol (2-AG) biosynthesis, rather than enhancing striatal damage, protects striatal neurons from malonate-induced death: a potential role of cyclooxygenase-2-dependent metabolism of 2-AG. Cell Death and Disease, 2013, 4, e862-e862.	2.7	69
13	Natural Cannabinoids Improve Dopamine Neurotransmission and Tau and Amyloid Pathology in a Mouse Model of Tauopathy. Journal of Alzheimer's Disease, 2013, 35, 525-539.	1.2	98
14	Cannabinoids: Novel Medicines for the Treatment of Huntingtons Disease. Recent Patents on CNS Drug Discovery, 2012, 7, 41-48.	0.9	64
15	Q23â€A double blind, cross over, placebo-controlled, phase II trial of Sativex in Huntington's Disease. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, A62.2-A62.	0.9	3
16	Sativex-like Combination of Phytocannabinoids is Neuroprotective in Malonate-Lesioned Rats, an Inflammatory Model of Huntington's Disease: Role of CB ₁ and CB ₂ Receptors. ACS Chemical Neuroscience, 2012, 3, 400-406.	1.7	81
17	New Serotonin 5-HT _{1A} Receptor Agonists with Neuroprotective Effect against Ischemic Cell Damage. Journal of Medicinal Chemistry, 2011, 54, 7986-7999.	2.9	36
18	Neuroprotective effects of phytocannabinoidâ€based medicines in experimental models of Huntington's disease. Journal of Neuroscience Research, 2011, 89, 1509-1518.	1.3	84

ONINTZA SAGREDO

#	Article	IF	CITATIONS
19	Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington's disease. Brain, 2011, 134, 119-136.	3.7	178
20	The endocannabinoid system as a target for the treatment of neuronal damage. Expert Opinion on Therapeutic Targets, 2010, 14, 387-404.	1.5	78
21	Cannabinoid CB ₂ receptor agonists protect the striatum against malonate toxicity: Relevance for Huntington's disease. Glia, 2009, 57, 1154-1167.	2.5	165
22	Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity. Brain, 2009, 132, 3152-3164.	3.7	323
23	Lack of association between polymorphisms in cannabinoid receptor gene (CNR1) and fatty acid amide hydroxylase gene (FAAH) and eating disorders in a preliminary study. Psychiatric Genetics, 2009, 19, 336.	0.6	5
24	Role of CB2 receptors in neuroprotective effects of cannabinoids. Molecular and Cellular Endocrinology, 2008, 286, S91-S96.	1.6	105
25	The Endocannabinoid System in Huntingtons Disease. Current Pharmaceutical Design, 2008, 14, 2317-2325.	0.9	61
26	Cannabidiol reduced the striatal atrophy caused 3â€nitropropionic acid <i>in vivo</i> by mechanisms independent of the activation of cannabinoid, vanilloid TRPV ₁ and adenosine A _{2A} receptors. European Journal of Neuroscience, 2007, 26, 843-851.	1.2	120
27	Cannabinoids and Neuroprotection in Basal Ganglia Disorders. Molecular Neurobiology, 2007, 36, 82-91.	1.9	79
28	Chronic Δ9-tetrahydrocannabinol administration affects serotonin levels in the rat frontal cortex. Naunyn-Schmiedeberg's Archives of Pharmacology, 2006, 372, 313-317.	1.4	37
29	Therapeutic Potential of the Endocannabinoid System in the Brain. Mini-Reviews in Medicinal Chemistry, 2005, 5, 609-617.	1.1	13
30	Antinociceptive, behavioural and neuroendocrine effects of CP 55,940 in young rats. Developmental Brain Research, 2002, 136, 85-92.	2.1	74