Adam Bucki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7396980/publications.pdf

Version: 2024-02-01

		361045	476904
53	1,015	20	29
papers	citations	h-index	g-index
54	54	54	1322
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Novel multi-target-directed ligands for Alzheimer's disease: Combining cholinesterase inhibitors and 5-HT 6 receptor antagonists. Design, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2016, 124, 63-81.	2.6	72
2	Ligand-Optimized Homology Models of D ₁ and D ₂ Dopamine Receptors: Application for Virtual Screening. Journal of Chemical Information and Modeling, 2013, 53, 638-648.	2. 5	59
3	Novel Arylsulfonamide Derivatives with 5-HT ₆ /5-HT ₇ Receptor Antagonism Targeting Behavioral and Psychological Symptoms of Dementia. Journal of Medicinal Chemistry, 2014, 57, 4543-4557.	2.9	58
4	Metabolic carbonyl reduction of anthracyclines — role in cardiotoxicity and cancer resistance. Reducing enzymes as putative targets for novel cardioprotective and chemosensitizing agents. Investigational New Drugs, 2017, 35, 375-385.	1,2	46
5	Novel Multitarget-Directed Ligands Aiming at Symptoms and Causes of Alzheimer's Disease. ACS Chemical Neuroscience, 2018, 9, 1195-1214.	1.7	44
6	Novel butanehydrazide derivatives of purine-2,6-dione as dual PDE4/7 inhibitors with potential anti-inflammatory activity: Design, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2018, 146, 381-394.	2.6	37
7	Idalopirdine $\hat{a} \in \mathbb{C}$ a small molecule antagonist of 5-HT6 with therapeutic potential against obesity. Metabolic Brain Disease, 2015, 30, 1487-1494.	1.4	35
8	Phosphodiesterase 10 Inhibitors - Novel Perspectives for Psychiatric and Neurodegenerative Drug Discovery. Current Medicinal Chemistry, 2018, 25, 3455-3481.	1.2	35
9	Novel spirohydantoin derivative as a potent multireceptor-active antipsychotic and antidepressant agent. Bioorganic and Medicinal Chemistry, 2015, 23, 3436-3447.	1.4	32
10	Antidepressant- and anxiolytic-like activity of 7-phenylpiperazinylalkyl-1,3-dimethyl-purine-2,6-dione derivatives with diversified 5-HT1A receptor functional profile. Bioorganic and Medicinal Chemistry, 2015, 23, 212-221.	1.4	31
11	Idalopirdine, a selective 5-HT6 receptor antagonist, reduces food intake and body weight in a model of excessive eating. Metabolic Brain Disease, 2018, 33, 733-740.	1.4	30
12	Synergistic anticancer activity of doxorubicin and piperlongumine on DU-145 prostate cancer cells – The involvement of carbonyl reductase 1 inhibition. Chemico-Biological Interactions, 2019, 300, 40-48.	1.7	30
13	Evaluation of 1â€arylpiperazine derivative of hydroxybenzamides as 5â€HT _{1A} and 5â€HT ₇ serotonin receptor ligands: An experimental and molecular modeling approach. Journal of Heterocyclic Chemistry, 2011, 48, 192-198.	1.4	29
14	Structure–activity relationships and molecular studies of novel arylpiperazinylalkyl purine-2,4-diones and purine-2,4,8-triones with antidepressant and anxiolytic-like activity. European Journal of Medicinal Chemistry, 2015, 97, 142-154.	2.6	27
15	Design, synthesis, and biological evaluation of fluorinated imidazo[1,2- a]pyridine derivatives with potential antipsychotic activity. European Journal of Medicinal Chemistry, 2016, 124, 456-467.	2.6	27
16	Novel amide derivatives of 1,3-dimethyl-2,6-dioxopurin-7-yl-alkylcarboxylic acids as multifunctional TRPA1 antagonists and PDE4/7 inhibitors: A new approach for the treatment of pain. European Journal of Medicinal Chemistry, 2018, 158, 517-533.	2.6	27
17	Novel 5-HT6 receptor antagonists/D2 receptor partial agonists targeting behavioral and psychological symptoms of dementia. European Journal of Medicinal Chemistry, 2015, 92, 221-235.	2.6	26
18	Novel 3-(1,2,3,6-Tetrahydropyridin-4-yl)-1 <i>H</i> -indole-Based Multifunctional Ligands with Antipsychotic-Like, Mood-Modulating, and Procognitive Activity. Journal of Medicinal Chemistry, 2017, 60, 7483-7501.	2.9	25

#	Article	IF	CITATIONS
19	Advances in Discovery of PDE10A Inhibitors for CNS-Related Disorders. Part 1: Overview of the Chemical and Biological Research. Current Drug Targets, 2018, 20, 122-143.	1.0	23
20	Synthesis and biological evaluation of 2-fluoro and 3-trifluoromethyl-phenyl-piperazinylalkyl derivatives of $1 < i > H < i> -imidazo[2,1- f < i>] purine-2,4(3 < i> H < i> ,8 < i> H < i>)-dione as potential antidepressant agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 10-24.$	2.5	21
21	Novel Aryloxyethyl Derivatives of 1-(1-Benzoylpiperidin-4-yl)methanamine as the Extracellular Regulated Kinases 1/2 (ERK1/2) Phosphorylation-Preferring Serotonin 5-HT _{1A} Receptor-Biased Agonists with Robust Antidepressant-like Activity. Journal of Medicinal Chemistry, 2019, 62, 2750-2771.	2.9	21
22	Novel and effective synthesis protocol of AgNPs functionalized using L-cysteine as a potential drug carrier. Naunyn-Schmiedeberg's Archives of Pharmacology, 2018, 391, 123-130.	1.4	19
23	Novel anilide and benzylamide derivatives of arylpiperazinylalkanoic acids as 5-HT1A/5-HT7 receptor antagonists and phosphodiesterase 4/7 inhibitors with procognitive and antidepressant activity. European Journal of Medicinal Chemistry, 2020, 201, 112437.	2.6	19
24	Antiâ€Alzheimer's multitargetâ€directed ligands with serotonin 5â€HT ₆ antagonist, butyrylcholinesterase inhibitory, and antioxidant activity. Archiv Der Pharmazie, 2019, 352, e1900041.	2.1	16
25	New imidazopyridines with phosphodiesterase 4 and 7 inhibitory activity and their efficacy in animal models of inflammatory and autoimmune diseases. European Journal of Medicinal Chemistry, 2021, 209, 112854.	2.6	16
26	Novel Mannich Bases, 5â∈Arylimidazolidineâ∈2,4â∈dione Derivatives with Dual 5â∈HT _{1A} Receptor and Serotonin Transporter Affinity. Archiv Der Pharmazie, 2013, 346, 98-109.	2.1	15
27	3-Aminomethyl Derivatives of 2-Phenylimidazo[1,2- <i>a</i>]-pyridine as Positive Allosteric Modulators of GABA _A Receptor with Potential Antipsychotic Activity. ACS Chemical Neuroscience, 2017, 8, 1291-1298.	1.7	15
28	Discovery of Novel pERK1/2- or β-Arrestin-Preferring 5-HT _{1A} Receptor-Biased Agonists: Diversified Therapeutic-like versus Side Effect Profile. Journal of Medicinal Chemistry, 2020, 63, 10946-10971.	2.9	15
29	Cinnamic acid derivatives as chemosensitising agents against DOX-treated lung cancer cells – Involvement of carbonyl reductase 1. European Journal of Pharmaceutical Sciences, 2020, 154, 105511.	1.9	14
30	Synthesis and biological evaluation of $\langle i \rangle N \langle i \rangle$ -arylpiperazine derivatives of 4,4-dimethylisoquinoline-1,3(2 $\langle i \rangle H \langle i \rangle$,4 $\langle i \rangle$ H $\langle i \rangle$)-dione as potential antiplatelet agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 536-545.	2.5	13
31	Development and crystallography-aided SAR studies of multifunctional BuChE inhibitors and 5-HT6R antagonists with \hat{l}^2 -amyloid anti-aggregation properties. European Journal of Medicinal Chemistry, 2021, 225, 113792.	2.6	13
32	Discovery of 1-(phenylsulfonyl)-1H-indole-based multifunctional ligands targeting cholinesterases and 5-HT6 receptor with anti-aggregation properties against amyloid-beta and tau. European Journal of Medicinal Chemistry, 2021, 225, 113783 .	2.6	11
33	Determination of lipophilicity of <i>α</i> â€(4â€phenylpiperazine) derivatives of <i>N</i> â€benzylamides using chromatographic and computational methods. Biomedical Chromatography, 2008, 22, 428-432.	0.8	10
34	Arylpiperazinylalkyl derivatives of 8-amino-1,3-dimethylpurine-2,6-dione as novel multitarget 5-HT/D receptor agents with potential antipsychotic activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 1048-1062.	2.5	10
35	Aminoalkyl Derivatives of 8â€Alkoxypurineâ€2,6â€diones: Multifunctional 5â€HT _{1A} /5â€HT <sub>/5a€HT<sub>/5a€HT<sub>/5a€HT<sub>/5a€HT<sub>/5a€HT<sub>/5a€HT<sub>/5a€HT<sub>/5a€HT<sub>/5a€HT<sub>/5a€HT<sub>/5a€HT<sub>/5a€HT<sub>/5a€HT<sub>/5a€HT<sub>/5a€HT<sub 5abht<s<="" 5abht_{<td>2.1</td><td>9</td>}</sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	2.1	9
36	Novel multitarget 5-arylidenehydantoins with arylpiperazinealkyl fragment: Pharmacological evaluation and investigation of cytotoxicity and metabolic stability. Bioorganic and Medicinal Chemistry, 2019, 27, 4163-4173.	1.4	8

#	Article	IF	CITATIONS
37	Characteristics of metabolic stability and the cell permeability of 2â€pyrimidinylâ€piperazinylâ€alkyl derivatives of 1Hâ€imidazo[2,1 â€f]purineâ€2,4(3 H ,8 H)â€dione with antidepressant†and anxiolyticâ€like activities. Chemical Biology and Drug Design, 2019, 93, 511-521.	1.5	8
38	Synthesis and activity of di- or trisubstituted N -(phenoxyalkyl)- or N -{2-[2-(phenoxy)ethoxy]ethyl}piperazine derivatives on the central nervous system. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2039-2049.	1.0	7
39	In Vitro and In Silico ADME-Tox Profiling and Safety Significance of Multifunctional Monoamine Oxidase Inhibitors Targeting Neurodegenerative Diseases. ACS Chemical Neuroscience, 2020, 11, 3793-3801.	1.7	7
40	New Arylpiperazinylalkyl Derivatives of 8â€Alkoxyâ€purineâ€2,6â€dione and Dihydro[1,3]oxazolo[2,3â€ <i>f</i>)purinedione Targeting the Serotonin 5â€HT _{/5â€HT_{/1A}/5â€HT_{/5â€HT_/}}	chiv ¹	6
41	Synthesis and Pharmacological Activity of a New Series of 1â∈(1 <i>H</i> i>Hi>a∈Indolâ∈4â∈yloxy)â∈3â∈(2â∈(2â∈methoxyphenoxy)ethylamino)propanâ∈2â∈ol Analogs. Archiv D 2016, 349, 211-223.	e ı2Pı harma	ızi © ,
42	Impact of N-Alkylamino Substituents on Serotonin Receptor (5-HTR) Affinity and Phosphodiesterase 10A (PDE10A) Inhibition of Isoindole-1,3-dione Derivatives. Molecules, 2020, 25, 3868.	1.7	6
43	Multifunctional Arylsulfone and Arylsulfonamide-Based Ligands with Prominent Mood-Modulating Activity and Benign Safety Profile, Targeting Neuropsychiatric Symptoms of Dementia. Journal of Medicinal Chemistry, 2021, 64, 12603-12629.	2.9	5
44	The study of the lipophilicity of $\langle i \rangle \hat{1} \pm \langle i \rangle \hat{a} \in (4\hat{a} \in phenylpiperazin \hat{a} \in 1\hat{a} \in yh) \hat{a} \in (4\hat{a} \in phenylpiperazin \hat{a} \in yh) \hat{a} \in (4\hat{a} \in yh$	ing 6.8	4
45	Synthesis of N â€(phenoxyalkyl)â€, N â€{2â€{2â€(phenoxy)ethoxy]ethyl}―or N â€(phenoxyacetyl)piperazine Derivatives and Their Activity Within the Central Nervous System. ChemistrySelect, 2019, 4, 9381-9391.	0.7	4
46	Multifunctional 6-fluoro-3-[3-(pyrrolidin-1-yl)propyl]-1,2-benzoxazoles targeting behavioral and psychological symptoms of dementia (BPSD). European Journal of Medicinal Chemistry, 2020, 191, 112149.	2.6	4
47	Carbonyl reduction pathway in hepatic in vitro metabolism of anthracyclines: Impact of structure on biotransformation rate. Toxicology Letters, 2021, 342, 50-57.	0.4	4
48	Design, synthesis, and behavioral evaluation of dual-acting compounds as phosphodiesterase type 10A (PDE10A) inhibitors and serotonin ligands targeting neuropsychiatric symptoms in dementia. European Journal of Medicinal Chemistry, 2022, 233, 114218.	2.6	4
49	Structural Modeling of TRPA1 Ion Channelâ€"Determination of the Binding Site for Antagonists. Molecules, 2022, 27, 3077.	1.7	4
50	Cinnamamide derivatives with 4-hydroxypiperidine moiety enhance effect of doxorubicin to cancer cells and protect cardiomyocytes against drug-induced toxicity through CBR1 inhibition mechanism. Life Sciences, 2022, 305, 120777.	2.0	3
51	Novel serotonin 5-HT2A receptor antagonists derived from 4-phenylcyclohexane-5-spiro-and 5-methyl-5-phenyl-hydantoin, for use as potential antiplatelet agents. Pharmacological Reports, 2021, 73, 1361-1372.	1.5	2
52	NEW SPIROHYDANTOIN DERIVATIVES - SYNTHESIS, PHARMACOLOGICAL EVALUATION, AND MOLECULAR MODELING STUDY. Acta Poloniae Pharmaceutica, 2016, 73, 1545-1554.	0.3	2
53	Functional selectivity – chance for better and safer drugs?. Postepy Psychiatrii I Neurologii, 2017, 26, 165-178.	0.2	1