
Jonathan A Brant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7396979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing the Dissolution of Nano-Silver Using a Multidirectional Magnetic Field in Water Systems. Environmental Engineering Science, 2021, 38, 936-943.	0.8	3
2	Magnetic Field Effects on pH and Electrical Conductivity: Implications for Water and Wastewater Treatment. Environmental Engineering Science, 2020, 37, 717-727.	0.8	15
3	Influence of membrane characteristics on performance in soil-membrane-water subsurface desalination irrigation systems. Journal of Water Process Engineering, 2019, 32, 100984.	2.6	3
4	Effects of aluminogermanate imogolite nanotube orientation on mass transport across polyamide nanocomposite membranes. Journal of Membrane Science, 2019, 585, 38-51.	4.1	10
5	Bio-inspired superhydrophobic and superoleophilic nanofibrous membranes for non-aqueous solvent and oil separation from water. Separation and Purification Technology, 2019, 210, 587-599.	3.9	58
6	Nanoparticle stability in lake water shaped by natural organic matter properties and presence of particulate matter. Science of the Total Environment, 2019, 656, 338-346.	3.9	33
7	Dispersing surface-modified imogolite nanotubes in polar and non-polar solvents. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	10
8	Water transport mechanisms for salt-rejecting membranes driven by soil-water potentials. Journal of Membrane Science, 2018, 563, 107-114.	4.1	8
9	Synthesis of polyamide thin-film nanocomposite membranes using surface modified imogolite nanotubes. Journal of Membrane Science, 2018, 563, 664-675.	4.1	13
10	Superhydrophobic dual layer functionalized titanium dioxide/polyvinylidene fluoride- co -hexafluoropropylene (TiO 2 /PH) nanofibrous membrane for high flux membrane distillation. Journal of Membrane Science, 2017, 537, 140-150.	4.1	119
11	Aggregation and Fouling Impacts in Determining Organic and Clay Removal by Electropositive Filtration. Journal of Environmental Engineering, ASCE, 2017, 143, .	0.7	2
12	A methodology for fabrication of thermomechanically activated switchable surface wettability. Journal of Applied Polymer Science, 2016, 133, .	1.3	5
13	Interrelationships Between Flux, Membrane Properties, and Soil Water Transport in a Subsurface Pervaporation Irrigation System. Environmental Engineering Science, 2015, 32, 539-550.	0.8	7
14	Heteroaggregation of Titanium Dioxide Nanoparticles with Natural Clay Colloids. Environmental Science & Technology, 2015, 49, 6608-6616.	4.6	116
15	Propagation-of-uncertainty from contact angle and streaming potential measurements to XDLVO model assessments of membrane–colloid interactions. Journal of Colloid and Interface Science, 2014, 428, 191-198.	5.0	20
16	Feasibility assessment of pervaporation for desalinating high-salinity brines. Journal of Water Reuse and Desalination, 2014, 4, 109-124.	1.2	45
17	Salt rejection and water flux through a tubular pervaporative polymer membrane designed for irrigation applications. Environmental Technology (United Kingdom), 2013, 34, 1329-1339.	1.2	29
18	Mechanistic analysis of microfiltration membrane fouling by buckminsterfullerene (C60) nanoparticles. Journal of Membrane Science, 2012, 415-416, 546-557.	4.1	10

JONATHAN A BRANT

#	Article	IF	CITATIONS
19	Buckminsterfullerene (C60) nanoparticle fouling of microfiltration membranes operated in a cross-flow configuration. Separation and Purification Technology, 2012, 100, 30-43.	3.9	4
20	Characterizing NF and RO membrane surface heterogeneity using chemical force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 280, 45-57.	2.3	39
21	Characterizing the Impact of Preparation Method on Fullerene Cluster Structure and Chemistry. Langmuir, 2006, 22, 3878-3885.	1.6	258
22	Aggregation and Deposition Characteristics of Fullerene Nanoparticles in Aqueous Systems. Journal of Nanoparticle Research, 2005, 7, 545-553.	0.8	316
23	Comparison of Electrokinetic Properties of Colloidal Fullerenes (n-C60) Formed Using Two Proceduresâ€. Environmental Science & Technology, 2005, 39, 6343-6351.	4.6	229
24	Membrane–Colloid Interactions: Comparison of Extended DLVO Predictions with AFM Force Measurements. Environmental Engineering Science, 2002, 19, 413-427.	0.8	112
25	Assessing short-range membrane–colloid interactions using surface energetics. Journal of Membrane Science, 2002, 203, 257-273.	4.1	379