
Reina E Mebius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7396882/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Innate lymphoid cells — a proposal for uniform nomenclature. Nature Reviews Immunology, 2013, 13, 145-149.	22.7	2,054
2	Structure and function of the spleen. Nature Reviews Immunology, 2005, 5, 606-616.	22.7	1,702
3	Innate Lymphoid Cells: 10 Years On. Cell, 2018, 174, 1054-1066.	28.9	1,467
4	Requirement for RORÎ ³ in Thymocyte Survival and Lymphoid Organ Development. Science, 2000, 288, 2369-2373.	12.6	676
5	Organogenesis of lymphoid tissues. Nature Reviews Immunology, 2003, 3, 292-303.	22.7	668
6	Developing Lymph Nodes Collect CD4 + CD3 â^' LTβ + Cells That Can Differentiate to APC, NK Cells, and Follicular Cells but Not T or B Cells. Immunity, 1997, 7, 493-504.	14.3	624
7	New insights into the development of lymphoid tissues. Nature Reviews Immunology, 2010, 10, 664-674.	22.7	503
8	Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways. Cell Reports, 2016, 15, 2809-2824.	6.4	489
9	Conduits Mediate Transport of Low-Molecular-Weight Antigen to Lymph Node Follicles. Immunity, 2009, 30, 264-276.	14.3	370
10	Lymphotoxin β receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged <i>ApoE</i> â^'/â^' mice. Journal of Experimental Medicine, 2009, 206, 233-248.	8.5	331
11	Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature, 2014, 508, 123-127.	27.8	321
12	Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nature Immunology, 2009, 10, 1193-1199.	14.5	266
13	Regulation of Peripheral Lymph Node Genesis by the Tumor Necrosis Factor Family Member Trance. Journal of Experimental Medicine, 2000, 192, 1467-1478.	8.5	249
14	The Fetal Liver Counterpart of Adult Common Lymphoid Progenitors Gives Rise to All Lymphoid Lineages, CD45+CD4+CD3â^' Cells, As Well As Macrophages. Journal of Immunology, 2001, 166, 6593-6601.	0.8	234
15	Identification of Natural RORÎ ³ Ligands that Regulate the Development of Lymphoid Cells. Cell Metabolism, 2015, 21, 286-298.	16.2	193
16	Stromal Cell–Immune Cell Interactions. Annual Review of Immunology, 2011, 29, 23-43.	21.8	191
17	Retinoic Acid and Immune Homeostasis: A Balancing Act. Trends in Immunology, 2017, 38, 168-180.	6.8	185
18	A Conduit System Distributes Chemokines and Small Blood-borne Molecules through the Splenic White Pulp. Journal of Experimental Medicine, 2003, 198, 505-512.	8.5	182

#	Article	IF	CITATIONS
19	Expression of the Murine CD27 Ligand CD70 In Vitro and In Vivo. Journal of Immunology, 2003, 170, 33-40.	0.8	172
20	Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells. Journal of Immunology, 2017, 198, 2172-2181.	0.8	172
21	Retinoic Acid Induces Blood–Brain Barrier Development. Journal of Neuroscience, 2013, 33, 1660-1671.	3.6	171
22	Expression of Retinaldehyde Dehydrogenase Enzymes in Mucosal Dendritic Cells and Gut-Draining Lymph Node Stromal Cells Is Controlled by Dietary Vitamin A. Journal of Immunology, 2011, 186, 1934-1942.	0.8	165
23	The conduit system of the lymph node. International Immunology, 2008, 20, 1483-1487.	4.0	160
24	Inflammation and ectopic lymphoid structures in rheumatoid arthritis synovial tissues dissected by genomics technology: Identification of the interleukinâ€7 signaling pathway in tissues with lymphoid neogenesis. Arthritis and Rheumatism, 2007, 56, 2492-2502.	6.7	156
25	LTβR Signaling Induces Cytokine Expression and Up-Regulates Lymphangiogenic Factors in Lymph Node Anlagen. Journal of Immunology, 2009, 182, 5439-5445.	0.8	135
26	Induction of Secondary and Tertiary Lymphoid Structures in the Skin. Immunity, 2004, 21, 655-667.	14.3	133
27	New Insights into the Cell Biology of the Marginal Zone of the Spleen. International Review of Cytology, 2006, 250, 175-215.	6.2	132
28	Lymph Node Stromal Cells Support Dendritic Cell-Induced Gut-Homing of T Cells. Journal of Immunology, 2009, 183, 6395-6402.	0.8	128
29	Cellular Interactions in Lymph Node Development. Journal of Immunology, 2005, 174, 21-25.	0.8	116
30	Synovial lymphoid neogenesis does not define a specific clinical rheumatoid arthritis phenotype. Arthritis and Rheumatism, 2008, 58, 1582-1589.	6.7	114
31	Presumptive Lymph Node Organizers are Differentially Represented in Developing Mesenteric and Peripheral Nodes. Journal of Immunology, 2004, 173, 2968-2975.	0.8	112
32	The strict regulation of lymphocyte migration to splenic white pulp does not involve common homing receptors. Immunology, 2002, 106, 299-307.	4.4	104
33	Mouse Aorta Smooth Muscle Cells Differentiate Into Lymphoid Tissue Organizer-Like Cells on Combined Tumor Necrosis Factor Receptor-1/Lymphotoxin β-Receptor NF-κB Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 395-402.	2.4	103
34	Dendritic cells of the mouse recognized by two monoclonal antibodies. European Journal of Immunology, 1987, 17, 1555-1559.	2.9	100
35	Astrocyte-derived retinoic acid: a novel regulator of blood–brain barrier function in multiple sclerosis. Acta Neuropathologica, 2014, 128, 691-703.	7.7	100
36	Neuropilin-1 Is Expressed on Lymphoid Tissue Residing LTi-like Group 3 Innate Lymphoid Cells and Associated with Ectopic Lymphoid Aggregates. Cell Reports, 2017, 18, 1761-1773.	6.4	98

#	Article	IF	CITATIONS
37	B Cells Are Crucial for Both Development and Maintenance of the Splenic Marginal Zone. Journal of Immunology, 2004, 172, 3620-3627.	0.8	97
38	Cutting Edge: Instructive Role of Peripheral Tissue Cells in the Imprinting of T Cell Homing Receptor Patterns. Journal of Immunology, 2008, 181, 3745-3749.	0.8	93
39	Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. ELife, 2014, 3, .	6.0	92
40	The role of CD45+CD4+CD3- cells in lymphoid organ development. Immunological Reviews, 2002, 189, 41-50.	6.0	77
41	High Endothelial Venules: Lymphocyte Traffic Control and Controlled Traffic**This article was accepted for publication on 27 September 1996 Advances in Immunology, 1997, 65, 347-395.	2.2	75
42	Initiation of Cellular Organization in Lymph Nodes Is Regulated by Non-B Cell-Derived Signals and Is Not Dependent on CXC Chemokine Ligand 13. Journal of Immunology, 2004, 173, 4889-4896.	0.8	74
43	A molecular map of murine lymph node blood vascular endothelium at single cell resolution. Nature Communications, 2020, 11, 3798.	12.8	74
44	Vitamin A Controls the Presence of RORÎ ³ + Innate Lymphoid Cells and Lymphoid Tissue in the Small Intestine. Journal of Immunology, 2016, 196, 5148-5155.	0.8	72
45	Tertiary Lymphoid Structures: Diversity in Their Development, Composition, and Role. Journal of Immunology, 2021, 206, 273-281.	0.8	72
46	Innate lymphoid cells in secondary lymphoid organs. Immunological Reviews, 2016, 271, 185-199.	6.0	68
47	FcÎ ³ RIIB Regulates Nasal and Oral Tolerance: A Role for Dendritic Cells. Journal of Immunology, 2005, 174, 5279-5287.	0.8	67
48	From stem cells to lymphocytes; biology and transplantation. Immunological Reviews, 1997, 157, 13-40.	6.0	64
49	Lymphocyte triggering via L-selectin leads to enhanced galectin-3-mediated binding to dendritic cells. European Journal of Immunology, 1998, 28, 2864-2871.	2.9	62
50	Interdependence of stromal and immune cells for lymph node function. Trends in Immunology, 2012, 33, 264-270.	6.8	62
51	Isolation of the intact white pulp. Quantitative and qualitative analysis of the cellular composition of the splenic compartments. European Journal of Immunology, 2000, 30, 626-634.	2.9	61
52	Stromal cells of the mouse spleen. Frontiers in Immunology, 2012, 03, 201.	4.8	60
53	Selective modulation of the expression of L-selectin ligands by an immune response. Current Biology, 1995, 5, 670-678.	3.9	57
54	Development and Function of the Splenic Marginal Zone. Critical Reviews in Immunology, 2004, 24, 16.	0.5	56

#	Article	IF	CITATIONS
55	Lymph sacs are not required for the initiation of lymph node formation. Development (Cambridge), 2009, 136, 29-34.	2.5	52
56	Role of chemokines in the development of secondary and tertiary lymphoid tissues. Seminars in Immunology, 2003, 15, 243-248.	5.6	50
57	The importance of regional lymph nodes for mucosal tolerance. Immunological Reviews, 2006, 213, 119-130.	6.0	48
58	The identification and developmental requirements of colonic <scp>CD</scp> 169 ⁺ macrophages. Immunology, 2014, 142, 269-278.	4.4	47
59	Lymph Node Stromal Cells Generate Antigen-Specific Regulatory T Cells and Control Autoreactive T and B Cell Responses. Cell Reports, 2020, 30, 4110-4123.e4.	6.4	46
60	CD62L Is a Functional and Phenotypic Marker for Circulating Innate Lymphoid Cell Precursors. Journal of Immunology, 2019, 202, 171-182.	0.8	45
61	Galectin-2 expression is dependent on the rs7291467 polymorphism and acts as an inhibitor of arteriogenesis. European Heart Journal, 2012, 33, 1076-1084.	2.2	44
62	Developmental regulation of vascular addressin expression: a possible role for site-associated environments. International Immunology, 1993, 5, 443-449.	4.0	41
63	Secretory Leukoprotease Inhibitor in Mucosal Lymph Node Dendritic Cells Regulates the Threshold for Mucosal Tolerance. Journal of Immunology, 2007, 179, 6588-6595.	0.8	39
64	Blockade of IDO Inhibits Nasal Tolerance Induction. Journal of Immunology, 2007, 179, 894-900.	0.8	39
65	Cutting Edge: The Chemokine Receptor CXCR3 Retains Invariant NK T Cells in the Thymus. Journal of Immunology, 2009, 183, 2213-2216.	0.8	39
66	Talin1 is required for integrin-dependent B lymphocyte homing to lymph nodes and the bone marrow but not for follicular B-cell maturation in the spleen. Blood, 2010, 116, 5907-5918.	1.4	39
67	Lymphoid Organs for Peritoneal Cavity Immune Response: Milky Spots. Immunity, 2009, 30, 670-672.	14.3	38
68	Separation of splenic red and white pulp occurs before birth in a LTαβ-independent manner. Journal of Leukocyte Biology, 2008, 84, 152-161.	3.3	36
69	Cross-Tissue Transcriptomic Analysis of Human Secondary Lymphoid Organ-Residing ILC3s Reveals a Quiescent State in the Absence of Inflammation. Cell Reports, 2017, 21, 823-833.	6.4	32
70	Regulation of fucosyltransferase-VII expression in peripheral lymph node high endothelial venules. European Journal of Immunology, 1998, 28, 3040-3047.	2.9	31
71	Vagal innervation is required for the formation of tertiary lymphoid tissue in colitis. European Journal of Immunology, 2016, 46, 2467-2480.	2.9	31
72	Lymphoid organogenesis in brief. European Journal of Immunology, 2007, 37, S46-S52.	2.9	29

#	Article	IF	CITATIONS
73	A crucial role for retinoic acid in the development of <scp>N</scp> otchâ€dependent murine splenic <scp>CD</scp> 8 ^{â^`} <scp>CD</scp> 4 ^{â^`} and <scp>CD</scp> 4 ^{ dendritic cells. European Journal of Immunology, 2013, 43, 1608-1616.}	2.9	29
74	Mesenchymal stem cells are mobilized from the bone marrow during inflammation. Frontiers in Immunology, 2013, 4, 49.	4.8	29
75	Nestin-Expressing Precursors Give Rise to Both Endothelial as well as Nonendothelial Lymph Node Stromal Cells. Journal of Immunology, 2016, 197, 2686-2694.	0.8	29
76	Impaired lymph node stromal cell function during the earliest phases of rheumatoid arthritis. Arthritis Research and Therapy, 2018, 20, 35.	3.5	29
77	Increased osteoclast formation and activity by peripheral blood mononuclear cells in chronic liver disease patients with osteopenia. Hepatology, 2008, 47, 259-267.	7.3	28
78	Vitamin A metabolism and mucosal immune function are distinct between BALB/c and C57BL/6 mice. European Journal of Immunology, 2015, 45, 89-100.	2.9	28
79	Effects of fluorescent and nonfluorescent tracing methods on lymphocyte migration in vivo. Cytometry, 2004, 61A, 35-44.	1.8	26
80	A Reproducible Method for Isolation and In Vitro Culture of Functional Human Lymphoid Stromal Cells from Tonsils. PLoS ONE, 2016, 11, e0167555.	2.5	26
81	MAdCAM-1 Dependent Colonization of Developing Lymph Nodes Involves a Unique Subset of CD4+CD3- Hematolymphoid Cells. Cell Adhesion and Communication, 1998, 6, 97-103.	1.7	25
82	Impaired Lymphoid Organ Development in Mice Lacking the Heparan Sulfate Modifying Enzyme Glucuronyl C5-Epimerase. Journal of Immunology, 2010, 184, 3656-3664.	0.8	25
83	The Functional Activity of High Endothelial Venules: A Role for the Subcapsular Sinus Macrophages in the Lymph NodeREIN. Immunobiology, 1991, 182, 277-291.	1.9	24
84	Intestinal Macrophages Balance Inflammatory Expression Profiles via Vitamin A and Dectin-1-Mediated Signaling. Frontiers in Immunology, 2020, 11, 551.	4.8	22
85	Involvement of neurons and retinoic acid in lymphatic development: new insights in increased nuchal translucency. Prenatal Diagnosis, 2014, 34, 1312-1319.	2.3	18
86	Lymph node stromal cells: subsets and functions in health and disease. Trends in Immunology, 2021, 42, 920-936.	6.8	18
87	Development of Secondary Lymphoid Organs in Relation to Lymphatic Vasculature. Advances in Anatomy, Embryology and Cell Biology, 2014, 214, 81-91.	1.6	17
88	Vitamins in control of lymphocyte migration. Nature Immunology, 2007, 8, 229-230.	14.5	15
89	The Role of Endothelial Cells and TNF-Receptor Superfamily Members in Lymphoid Organogenesis and Function During Health and Inflammation. Frontiers in Immunology, 2019, 10, 2700.	4.8	14
90	Phenotypical Characterization of Spleen Remodeling in Murine Experimental Visceral Leishmaniasis. Frontiers in Immunology, 2020, 11, 653.	4.8	14

#	Article	IF	CITATIONS
91	The role of retinoic acid in the production of immunoglobulin A. Mucosal Immunology, 2022, 15, 562-572.	6.0	14
92	Development of a Retinal-Based Probe for the Profiling of Retinaldehyde Dehydrogenases in Cancer Cells. ACS Central Science, 2019, 5, 1965-1974.	11.3	13
93	Enhanced IgA coating of bacteria in women with Lactobacillus crispatus-dominated vaginal microbiota. Microbiome, 2022, 10, 15.	11.1	11
94	Macrophages and the activity of high endothelial venules. The effect of interferonâ€Î³. European Journal of Immunology, 1990, 20, 1615-1618.	2.9	10
95	L-Selectin-mediated lymphocyte aggregation: Role of carbohydrates, activation and effects on cellular interactions. Cell Adhesion and Communication, 1998, 6, 311-322.	1.7	10
96	Stromal cells and immune cells involved in formation of lymph nodes and their niches. Current Opinion in Immunology, 2020, 64, 20-25.	5.5	9
97	De Novo Carcinoma after Solid Organ Transplantation to Give Insight into Carcinogenesis in General—A Systematic Review and Meta-Analysis. Cancers, 2021, 13, 1122.	3.7	9
98	Is early repopulation of macrophage-depleted lymph node independent of blood monocyte immigration?. European Journal of Immunology, 1991, 21, 3041-3044.	2.9	8
99	Lymphoid Organogenesis: Educating stroma. Immunology and Cell Biology, 2007, 85, 79-80.	2.3	8
100	The Microenvironment in Barrett's Esophagus Tissue Is Characterized by High FOXP3 and RALDH2 Levels. Frontiers in Immunology, 2018, 9, 1375.	4.8	8
101	Dendritic Cell Migration to Skin-Draining Lymph Nodes Is Controlled by Dermatan Sulfate and Determines Adaptive Immunity Magnitude. Frontiers in Immunology, 2018, 9, 206.	4.8	7
102	Tumor microbiome: Pancreatic cancer and duodenal fluids contain multitudes, …but do they contradict themselves?. Critical Reviews in Oncology/Hematology, 2019, 144, 102824.	4.4	6
103	Human Lymph Node Stromal Cells Have the Machinery to Regulate Peripheral Tolerance during Health and Rheumatoid Arthritis. International Journal of Molecular Sciences, 2020, 21, 5713.	4.1	5
104	Development of follicular dendritic cells in lymph nodes depends on retinoic acid-mediated signaling. Development (Cambridge), 2021, 148, .	2.5	4
105	A Straightforward Method for 3D Visualization of B Cell Clusters and High Endothelial Venules in Lymph Nodes Highlights Differential Roles of TNFRI and -II. Frontiers in Immunology, 2021, 12, 699336.	4.8	3
106	Clickable Vitamins as a New Tool to Track Vitamin A and Retinoic Acid in Immune Cells. Frontiers in Immunology, 2021, 12, 671283.	4.8	3
107	Complexity of Lymphoid Tissue Organizers: A Response to Onder and Ludewig. Trends in Immunology, 2018, 39, 951-952.	6.8	2
108	Fungi Take Control of Lymphocyte Recirculation. Immunity, 2016, 44, 211-213.	14.3	1

#	Article	IF	CITATIONS
109	Response to Comment on "Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cellsâ€: Journal of Immunology, 2017, 198, 4188.2-4188.	0.8	1
110	Vascular Addressin Expression in Peyer'S Patches: an in Vivo Study of Site-Associated Regulation. Advances in Experimental Medicine and Biology, 1994, 355, 125-130.	1.6	1
111	Mouse common lymphocyte progenitors: correcting a misconception. Nature Reviews Immunology, 2002, 2, 140-140.	22.7	Ο
112	Editorial overview. Current Opinion in Immunology, 2012, 24, 253-254.	5.5	0
113	50 years of Dutch immunology – Founders, institutions, highlights. Immunology Letters, 2014, 162, 85-94.	2.5	Ο
114	Tertiary lymphoid structures are confined to patients presenting with unifocal Langerhans Cell Histiocytosis. Oncolmmunology, 2016, 5, e1164364.	4.6	0