

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7396821/publications.pdf Version: 2024-02-01

he hu

#	Article	IF	CITATIONS
1	All-Inorganic Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 15829-15832.	6.6	899
2	Design and Synthesis of Hierarchical MnO ₂ Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes. Nano Letters, 2010, 10, 2727-2733.	4.5	898
3	Hydrophilic Hierarchical Nitrogenâ€Doped Carbon Nanocages for Ultrahigh Supercapacitive Performance. Advanced Materials, 2015, 27, 3541-3545.	11.1	680
4	Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors. Nano Letters, 2012, 12, 4206-4211.	4.5	623
5	Mechanism of Silver Nanoparticle Toxicity Is Dependent on Dissolved Silver and Surface Coating in <i>Caenorhabditis elegans</i> . Environmental Science & Technology, 2012, 46, 1119-1127.	4.6	535
6	Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates. Chemical Physics Letters, 1999, 303, 125-129.	1.2	516
7	More than the lons: The Effects of Silver Nanoparticles on <i>Lolium multiflorum</i> . Environmental Science & amp; Technology, 2011, 45, 2360-2367.	4.6	494
8	Oxygen-Containing Functional Groups on Single-Wall Carbon Nanotubes:  NEXAFS and Vibrational Spectroscopic Studies. Journal of the American Chemical Society, 2001, 123, 10699-10704.	6.6	478
9	Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow Co ₃ S ₄ Nanoboxes for High-Rate and Heat-Resistant Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2017, 139, 12710-12715.	6.6	456
10	Band Structure, Phonon Scattering, and the Performance Limit of Single-Walled Carbon Nanotube Transistors. Physical Review Letters, 2005, 95, 146805.	2.9	447
11	CsPb _{0.9} Sn _{0.1} IBr ₂ Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability. Journal of the American Chemical Society, 2017, 139, 14009-14012.	6.6	447
12	Selective Growth of Well-Aligned Semiconducting Single-Walled Carbon Nanotubes. Nano Letters, 2009, 9, 800-805.	4.5	426
13	Growth of Millimeter-Long and Horizontally Aligned Single-Walled Carbon Nanotubes on Flat Substrates. Journal of the American Chemical Society, 2003, 125, 5636-5637.	6.6	418
14	Fullerene 'crop circles'. Nature, 1997, 385, 780-781.	13.7	402
15	Two-Dimensional Lead(II) Halide-Based Hybrid Perovskites Templated by Acene Alkylamines: Crystal Structures, Optical Properties, and Piezoelectricity. Inorganic Chemistry, 2017, 56, 9291-9302.	1.9	397
16	Size-Controlled Dissolution of Organic-Coated Silver Nanoparticles. Environmental Science & Technology, 2012, 46, 752-759.	4.6	374
17	Growth Mechanism of Oriented Long Single Walled Carbon Nanotubes Using "Fast-Heating―Chemical Vapor Deposition Process. Nano Letters, 2004, 4, 1025-1028.	4.5	367
18	A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chemical Physics Letters, 2000, 322, 321-326.	1.2	359

#	Article	IF	CITATIONS
19	Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nature Communications, 2017, 8, 14542.	5.8	348
20	Bright Infrared Emission from Electrically Induced Excitons in Carbon Nanotubes. Science, 2005, 310, 1171-1174.	6.0	320
21	Direct-Writing of Polymer Nanostructures:  Poly(thiophene) Nanowires on Semiconducting and Insulating Surfaces. Journal of the American Chemical Society, 2002, 124, 522-523.	6.6	317
22	Significantly Improved Long-Cycle Stability in High-Rate Li–S Batteries Enabled by Coaxial Graphene Wrapping over Sulfur-Coated Carbon Nanofibers. Nano Letters, 2013, 13, 2485-2489.	4.5	314
23	Metallic and polar Co 9 S 8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithiumâ^'sulfur batteries. Nano Energy, 2017, 38, 239-248.	8.2	314
24	Oxygen Vacancy Engineering Promoted Photocatalytic Ammonia Synthesis on Ultrathin Two-Dimensional Bismuth Oxybromide Nanosheets. Nano Letters, 2018, 18, 7372-7377.	4.5	308
25	Preparation of Monodispersed Feâ^'Mo Nanoparticles as the Catalyst for CVD Synthesis of Carbon Nanotubes. Chemistry of Materials, 2001, 13, 1008-1014.	3.2	303
26	Tungsten Oxide Nanowires on Tungsten Substrates. Nano Letters, 2002, 2, 849-851.	4.5	282
27	Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy, 2016, 24, 139-147.	8.2	282
28	Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy and Environmental Science, 2014, 7, 2025.	15.6	265
29	Emerging non-lithium ion batteries. Energy Storage Materials, 2016, 4, 103-129.	9.5	252
30	Plasmon-Enhanced Catalysis: Distinguishing Thermal and Nonthermal Effects. Nano Letters, 2018, 18, 1714-1723.	4.5	251
31	Electrochemical AFM "Dip-Pen―Nanolithography. Journal of the American Chemical Society, 2001, 123, 2105-2106.	6.6	250
32	Liquid-phase exfoliated ultrathin Bi nanosheets: Uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure. Nano Energy, 2018, 53, 808-816.	8.2	247
33	Solution-Phase Synthesis of Single-Crystalline Iron Phosphide Nanorods/Nanowires. Journal of the American Chemical Society, 2004, 126, 1195-1198.	6.6	239
34	The effects of Al substitution and partial dissolution on ultrathin NiFeAl trinary layered double hydroxide nanosheets for oxygen evolution reaction in alkaline solution. Nano Energy, 2017, 35, 350-357.	8.2	237
35	Horizontally Aligned Single-Walled Carbon Nanotube on Quartz from a Large Variety of Metal Catalysts. Nano Letters, 2008, 8, 2576-2579.	4.5	235
36	Improving the performance of cobalt–nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches. Energy and Environmental Science, 2013, 6, 3314.	15.6	223

ARTICLE IF CITATIONS Highly Efficient Retention of Polysulfides in "Sea Urchin―Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium–Sulfur Batteries. Nano Letters, 2017, 4.5 17, 437-444. Strong Capillarity, Chemisorption, and Electrocatalytic Capability of Crisscrossed Nanostraws 38 222 7.3 Enabled Flexible, High-Rate, and Long-Cycling Lithiumâ€"Sulfur Batteries. ACS Nano, 2018, 12, 4868-4876. Growth of High-Density Parallel Arrays of Long Single-Walled Carbon Nanotubes on Quartz 215 6.6 Substrates. Journal of the American Chemical Society, 2008, 130, 5428-5429. Cerium Oxide Nanocrystal Embedded Bimodal Micromesoporous Nitrogen-Rich Carbon Nanospheres as 40 7.3 213 Effective Sulfur Host for Lithium–Sulfur Batteries. ACS Nano, 2017, 11, 7274-7283. Stretchable and High-Performance Supercapacitors with Crumpled Graphene Papers. Scientific 1.6 207 Reports, 2014, 4, 6492. Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity 42 4.5 206 and Long-Life Lithiumâ€"Sulfur Batteries. Nano Letters, 2017, 17, 7839-7846. Conductive Graphene Fibers for Wire-Shaped Supercapacitors Strengthened by Unfunctionalized 193 Few-Walled Carbon Nanotubes. ACS Nano, 2015, 9, 1352-1359. Walnutâ€Like Multicoreâ€"Shell MnO Encapsulated Nitrogenâ€Rich Carbon Nanocapsules as Anode Material for Longâ€Cycling and Softâ€Packed Lithiumâ€lon Batteries. Advanced Functional Materials, 2018, 28, 44 7.8 191 1800003. Toxicity Reduction of Polymer-Stabilized Silver Nanoparticles by Sunlight. Journal of Physical 1.5 190 Chemistry C, 2011, 115, 4425-4432. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. 46 2.8 188 Nanoscale, 2013, 5, 1067-1073. Highly Branched VS₄ Nanodendrites with 1D Atomicâ€Chain Structure as a Promising 11.1 Cathode Material for Longâ€Cycling Magnesium Batteries. Advanced Materials, 2018, 30, e1802563. Synthesis of Nearly Uniform Single-Walled Carbon Nanotubes Using Identical Metal-Containing 48 6.6 179 Molecular Nanoclústers as Catalysts. Journal of the American Chemical Society, 2002, 124, 13688-13689. Controlling the Diameter of Carbon Nanotubes in Chemical Vapor Deposition Method by Carbon 1.2 174 Feeding. Journal of Physical Chemistry B, 2006, 110, 20254-20257. Miniaturized Swimming Soft Robot with Complex Movement Actuated and Controlled by Remote Light 50 1.6 173 Signals. Scientific Reports, 2015, 5, 17414. Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity 8.2 168 and heat resistance for dendrite-free lithium metal batteries. Nano Energy, 2018, 54, 17-25. Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes. Nano Research, 2010, 3, 52 5.8 167 387-394. Allâ€Inorganic Halide Perovskites for Optoelectronics: Progress and Prospects. Solar Rrl, 2017, 1, 3.1 1700086. In Situ Thermal Synthesis of Inlaid Ultrathin MoS₂/Graphene Nanosheets as 3.2

JIE LIU

166

54 Electrocatalysts for the Hydrogen Evolution Reaction. Chemistry of Materials, 2016, 28, 5733-5742.

#	Article	IF	CITATIONS
55	Additive engineering for high-performance room-temperature-processed perovskite absorbers with micron-size grains and microsecond-range carrier lifetimes. Energy and Environmental Science, 2017, 10, 2365-2371.	15.6	157
56	Selective Coating of Single Wall Carbon Nanotubes with Thin SiO2Layer. Nano Letters, 2002, 2, 329-332.	4.5	155
57	Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors. Nanoscale, 2017, 9, 1237-1243.	2.8	154
58	Mobile Ambipolar Domain in Carbon-Nanotube Infrared Emitters. Physical Review Letters, 2004, 93, 076803.	2.9	153
59	Functionalized Few-Walled Carbon Nanotubes for Mechanical Reinforcement of Polymeric Composites. ACS Nano, 2009, 3, 1057-1062.	7.3	152
60	CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nature Communications, 2012, 3, 677.	5.8	145
61	Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection. Water Research, 2013, 47, 3959-3965.	5.3	145
62	A Simple Chemical Route To Selectively Eliminate Metallic Carbon Nanotubes in Nanotube Network Devices. Journal of the American Chemical Society, 2004, 126, 10520-10521.	6.6	142
63	MoS ₂ â€Based Allâ€Purpose Fibrous Electrode and Selfâ€Powering Energy Fiber for Efficient Energy Harvesting and Storage. Advanced Energy Materials, 2017, 7, 1601208.	10.2	139
64	Efficient CVD Growth of Single-Walled Carbon Nanotubes on Surfaces Using Carbon Monoxide Precursor. Nano Letters, 2002, 2, 895-898.	4.5	138
65	Hydrophobic Interactions Increase Attachment of Gum Arabic- and PVP-Coated Ag Nanoparticles to Hydrophobic Surfaces. Environmental Science & Technology, 2011, 45, 5988-5995.	4.6	134
66	Hierarchical NiCo ₂ O ₄ nanosheets/nitrogen doped graphene/carbon nanotube film with ultrahigh capacitance and long cycle stability as a flexible binder-free electrode for supercapacitors. Journal of Materials Chemistry A, 2017, 5, 689-698.	5.2	131
67	Au "Ink―for AFM "Dip-Pen―Nanolithography. Langmuir, 2001, 17, 2575-2578.	1.6	129
68	Imaging of the Schottky Barriers and Charge Depletion in Carbon Nanotube Transistors. Nano Letters, 2007, 7, 2037-2042.	4.5	121
69	Rhodium Nanoparticles for Ultraviolet Plasmonics. Nano Letters, 2015, 15, 1095-1100.	4.5	119
70	Versatile Electronic Skins for Motion Detection of Joints Enabled by Aligned Fewâ€Walled Carbon Nanotubes in Flexible Polymer Composites. Advanced Functional Materials, 2017, 27, 1606604.	7.8	119
71	Fully Air-Bladed High-Efficiency Perovskite Photovoltaics. Joule, 2019, 3, 402-416.	11.7	119
72	Electrophoretically induced aqueous flow through single-walled carbon nanotube membranes. Nature Nanotechnology, 2012, 7, 133-139.	15.6	118

#	Article	IF	CITATIONS
73	High-Quality Single-Walled Carbon Nanotubes with Small Diameter, Controlled Density, and Ordered Locations Using a Polyferrocenylsilane Block Copolymer Catalyst Precursor. Chemistry of Materials, 2005, 17, 2227-2231.	3.2	117
74	Flexible Carbon Nanotube–Graphene/Sulfur Composite Film: Free-Standing Cathode for High-Performance Lithium/Sulfur Batteries. Journal of Physical Chemistry C, 2015, 119, 10288-10294.	1.5	116
75	Atomic Substitution Enabled Synthesis of Vacancy-Rich Two-Dimensional Black TiO _{2–<i>x</i>} Nanoflakes for High-Performance Rechargeable Magnesium Batteries. ACS Nano, 2018, 12, 12492-12502.	7.3	116
76	Rapid and Reproducible Fabrication of Carbon Nanotube AFM Probes by Dielectrophoresis. Nano Letters, 2005, 5, 11-14.	4.5	114
77	Polymer Electrolyte-Gated Carbon Nanotube Field-Effect Transistor. Nano Letters, 2004, 4, 623-627.	4.5	113
78	How Catalysts Affect the Growth of Singleâ€Walled Carbon Nanotubes on Substrates. Advanced Materials, 2010, 22, 1508-1515.	11.1	112
79	Polymeric Coatings on Silver Nanoparticles Hinder Autoaggregation but Enhance Attachment to Uncoated Surfaces. Langmuir, 2012, 28, 4178-4186.	1.6	112
80	Phonon populations and electrical power dissipation in carbon nanotube transistors. Nature Nanotechnology, 2009, 4, 320-324.	15.6	111
81	General Rules for Selective Growth of Enriched Semiconducting Single Walled Carbon Nanotubes with Water Vapor as in Situ Etchant. Journal of the American Chemical Society, 2012, 134, 14019-14026.	6.6	110
82	Detection, Characterization, and Abundance of Engineered Nanoparticles in Complex Waters by Hyperspectral Imagery with Enhanced Darkfield Microscopy. Environmental Science & Technology, 2012, 46, 10081-10088.	4.6	108
83	Multi-yolk-shell copper oxide@carbon octahedra as high-stability anodes for lithium-ion batteries. Nano Energy, 2016, 20, 305-314.	8.2	107
84	Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): Effect of coating materials. Aquatic Toxicology, 2012, 120-121, 59-66.	1.9	105
85	High-Performance Alkaline Organic Redox Flow Batteries Based on 2-Hydroxy-3-carboxy-1,4-naphthoquinone. ACS Energy Letters, 2018, 3, 2404-2409.	8.8	104
86	Time-Resolved Investigation of Bright Visible Wavelength Luminescence from Sulfur-Doped ZnO Nanowires and Micropowders. Nano Letters, 2006, 6, 1126-1130.	4.5	102
87	An all-inorganic perovskite solar capacitor for efficient and stable spontaneous photocharging. Nano Energy, 2018, 52, 239-245.	8.2	100
88	Lattice-Oriented Growth of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2000, 104, 6505-6508.	1.2	98
89	Antimicrobial nanotechnology: its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environmental Sciences: Processes and Impacts, 2013, 15, 93-102.	1.7	98
90	Decoration of Gold Nanoparticles on Surface-Grown Single-Walled Carbon Nanotubes for Detection of Every Nanotube by Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2009, 131, 14310-14316.	6.6	97

#	Article	IF	CITATIONS
91	Recent Advances in Methods of Forming Carbon Nanotubes. MRS Bulletin, 2004, 29, 244-250.	1.7	96
92	Carbon nanotube arrays based high-performance infrared photodetector [Invited]. Optical Materials Express, 2012, 2, 839.	1.6	93
93	Chemical Vapor Depositions of Single-Walled Carbon Nanotubes Catalyzed by Uniform Fe2O3Nanoclusters Synthesized Using Diblock Copolymer Micelles. Journal of Physical Chemistry B, 2004, 108, 6124-6129.	1.2	92
94	High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices. Nature Nanotechnology, 2013, 8, 917-922.	15.6	92
95	Carbon Nanotube Synthesis and Organization. Topics in Applied Physics, 2007, , 101-165.	0.4	89
96	Engineering hollow mesoporous silica nanocontainers with molecular switches for continuous self-healing anticorrosion coating. Journal of Materials Chemistry A, 2015, 3, 9510-9516.	5.2	89
97	Deposition of Silver Nanoparticles in Geochemically Heterogeneous Porous Media: Predicting Affinity from Surface Composition Analysis. Environmental Science & amp; Technology, 2011, 45, 5209-5215.	4.6	88
98	Etching of Carbon Nanotubes by OzoneA Surface Area Study. Langmuir, 2005, 21, 4200-4204.	1.6	86
99	Light-Induced Thermal Gradients in Ruthenium Catalysts Significantly Enhance Ammonia Production. Nano Letters, 2019, 19, 1706-1711.	4.5	86
100	Integrated perovskite solar capacitors with high energy conversion efficiency and fast photo-charging rate. Journal of Materials Chemistry A, 2018, 6, 2047-2052.	5.2	85
101	Nitrogen-Doped Carbon Nanotube Forests Planted on Cobalt Nanoflowers as Polysulfide Mediator for Ultralow Self-Discharge and High Areal-Capacity Lithium–Sulfur Batteries. Nano Letters, 2018, 18, 7949-7954.	4.5	85
102	Schottky diodes from asymmetric metal-nanotube contacts. Applied Physics Letters, 2006, 88, 133501.	1.5	84
103	Reducing Environmental Toxicity of Silver Nanoparticles through Shape Control. Environmental Science & Technology, 2015, 49, 10093-10098.	4.6	83
104	Room Temperature Purification of Few-Walled Carbon Nanotubes with High Yield. ACS Nano, 2008, 2, 1634-1638.	7.3	79
105	Solution-Processed, Antimony-Doped Tin Oxide Colloid Films Enable High-Performance TiO ₂ Photoanodes for Water Splitting. Nano Letters, 2013, 13, 1481-1488.	4.5	79
106	Strong, Machinable Carbon Aerogels for High Performance Supercapacitors. Advanced Functional Materials, 2016, 26, 4976-4983.	7.8	79
107	Meditations on the Ubiquity and Mutability of Nano-Sized Materials in the Environment. ACS Nano, 2011, 5, 8466-8470.	7.3	77
108	Synthesis of High-Density, Large-Diameter, and Aligned Single-Walled Carbon Nanotubes by Multiple-Cycle Growth Methods. ACS Nano, 2011, 5, 3849-3857.	7.3	76

#	Article	IF	CITATIONS
109	Highly efficient CsPbIBr ₂ perovskite solar cells with efficiency over 9.8% fabricated using a preheating-assisted spin-coating method. Journal of Materials Chemistry A, 2019, 7, 19008-19016.	5.2	76
110	Raman Spectroscopy and Imaging of Ultralong Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109, 3751-3758.	1.2	75
111	Solution synthesis and phase control of inorganic perovskites for high-performance optoelectronic devices. Nanoscale, 2017, 9, 11841-11845.	2.8	75
112	Guided Growth of Nanoscale Conducting Polymer Structures on Surface-Functionalized Nanopatterns. Journal of the American Chemical Society, 2006, 128, 3760-3763.	6.6	73
113	A binder-free NiCo ₂ O ₄ nanosheet/3D elastic N-doped hollow carbon nanotube sponge electrode with high volumetric and gravimetric capacitances for asymmetric supercapacitors. Nanoscale, 2017, 9, 16826-16835.	2.8	73
114	Raman Spectral Imaging of a Carbon Nanotube Intramolecular Junction. Physical Review Letters, 2005, 94, 016802.	2.9	71
115	Nanoporous and lyophilic battery separator from regenerated eggshell membrane with effective suppression of dendritic lithium growth. Energy Storage Materials, 2018, 14, 258-266.	9.5	69
116	Oriented Long Single Walled Carbon Nanotubes on Substrates from Floating Catalysts. Journal of Physical Chemistry B, 2003, 107, 13251-13254.	1.2	68
117	Growth of High-Density-Aligned and Semiconducting-Enriched Single-Walled Carbon Nanotubes: Decoupling the Conflict between Density and Selectivity. ACS Nano, 2014, 8, 554-562.	7.3	68
118	Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films. Science Advances, 2016, 2, e1600209.	4.7	67
119	Influence of the Nickel Oxide Nanostructure Morphology on the Effectiveness of Reduced Graphene Oxide Coating in Supercapacitor Electrodes. Journal of Physical Chemistry C, 2014, 118, 2281-2286.	1.5	66
120	Thermal Recovery Behavior of Fluorinated Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2002, 106, 293-296.	1.2	62
121	Synthesis of High-Purity Few-Walled Carbon Nanotubes from Ethanol/Methanol Mixture. Chemistry of Materials, 2006, 18, 5691-5695.	3.2	62
122	Making a commercial carbon fiber cloth having comparable capacitances to carbon nanotubes and graphene in supercapacitors through a "top-down―approach. Nanoscale, 2015, 7, 3285-3291.	2.8	62
123	Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics. Nanoscale Horizons, 2016, 1, 75-80.	4.1	62
124	Functional nanostructures from surface chemistry patterning. Physical Chemistry Chemical Physics, 2007, 9, 207-225.	1.3	61
125	Carbon nanotube based ultra-low voltage integrated circuits: Scaling down to 0.4 V. Applied Physics Letters, 2012, 100, 263116.	1.5	61
126	Well-designed Te/SnS2/Ag artificial nanoleaves for enabling and enhancing visible-light driven overall splitting of pure water. Nano Energy, 2017, 39, 539-545.	8.2	61

#	Article	IF	CITATIONS
127	Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes. Nature Electronics, 2021, 4, 653-663.	13.1	61
128	Inorganic CsPbIBr ₂ â€Based Perovskite Solar Cells: Fabrication Technique Modification and Efficiency Improvement. Solar Rrl, 2019, 3, 1900135.	3.1	60
129	Confirming nonthermal plasmonic effects enhance CO2 methanation on Rh/TiO2 catalysts. Nano Research, 2019, 12, 1906-1911.	5.8	60
130	Controlled Growth of Long GaN Nanowires from Catalyst Patterns Fabricated by "Dip-Pen― Nanolithographic Techniques. Chemistry of Materials, 2004, 16, 1633-1636.	3.2	58
131	Highly Stretchable Conductive Fibers from Few-Walled Carbon Nanotubes Coated on Poly(<i>m</i> -phenylene isophthalamide) Polymer Core/Shell Structures. ACS Nano, 2015, 9, 10252-10257.	7.3	58
132	Hierarchical porous nitrogen-rich carbon nanospheres with high and durable capabilities for lithium and sodium storage. Nanoscale, 2016, 8, 17911-17918.	2.8	57
133	Carrier Dynamics Engineering for High-Performance Electron-Transport-Layer-free Perovskite Photovoltaics. CheM, 2018, 4, 2405-2417.	5.8	57
134	Flexible devices: from materials, architectures to applications. Journal of Semiconductors, 2018, 39, 011010.	2.0	56
135	Site-Specific Fabrication of Nanoscale Heterostructures:Â Local Chemical Modification of GaN Nanowires Using Electrochemical Dip-Pen Nanolithography. Journal of the American Chemical Society, 2004, 126, 6409-6413.	6.6	55
136	Recycling PM2.5 carbon nanoparticles generated by diesel vehicles for supercapacitors and oxygen reduction reaction. Nano Energy, 2017, 33, 229-237.	8.2	55
137	Density Enhancement of Aligned Single-Walled Carbon Nanotube Thin Films on Quartz Substrates by Sulfur-Assisted Synthesis. Nano Letters, 2009, 9, 3646-3650.	4.5	54
138	Fabrication of Ordered Catalytically Active Nanoparticles Derived from Block Copolymer Micelle Templates for Controllable Synthesis of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2006, 110, 6655-6660.	1.2	53
139	Supramolecular Nanomimetics: Replication of Micelles, Viruses, and Other Naturally Occurring Nanoscale Objects. Small, 2007, 3, 845-849.	5.2	53
140	Synthesis of Uniform Double-Walled Carbon Nanotubes Using Iron Disilicide as Catalyst. Nano Letters, 2007, 7, 2417-2421.	4.5	52
141	NMR Methods for Characterizing the Pore Structures and Hydrogen Storage Properties of Microporous Carbons. Journal of the American Chemical Society, 2010, 132, 8618-8626.	6.6	52
142	Hierarchical Ternary Carbide Nanoparticle/Carbon Nanotube-Inserted N-Doped Carbon Concave-Polyhedrons for Efficient Lithium and Sodium Storage. ACS Applied Materials & Interfaces, 2016, 8, 26834-26841.	4.0	52
143	Stable and accurate pressure approximation for unsteady incompressible viscous flow. Journal of Computational Physics, 2010, 229, 3428-3453.	1.9	51
144	One-step fabrication of large-area ultrathin MoS ₂ nanofilms with high catalytic activity for photovoltaic devices. Nanoscale, 2016, 8, 16017-16025.	2.8	51

#	Article	lF	CITATIONS
145	Controlled growth and photoconductive properties of hexagonal SnS2 nanoflakes with mesa-shaped atomic steps. Nano Research, 2017, 10, 1434-1447.	5.8	51
146	Highly efficient overall water splitting driven by all-inorganic perovskite solar cells and promoted by bifunctional bimetallic phosphide nanowire arrays. Journal of Materials Chemistry A, 2018, 6, 20076-20082.	5.2	51
147	High-Performance Li–Se Batteries Enabled by Selenium Storage in Bottom-Up Synthesized Nitrogen-Doped Carbon Scaffolds. ACS Applied Materials & Interfaces, 2017, 9, 25232-25238.	4.0	50
148	Piezopotential Gated Nanowireâ^'Nanotube Hybrid Field-Effect Transistor. Nano Letters, 2010, 10, 3084-3089.	4.5	49
149	Effects of morphology and chemical doping on electrochemical properties of metal hydroxides in pseudocapacitors. Nanoscale, 2015, 7, 3181-3188.	2.8	49
150	Li ₃ V ₂ (PO ₄) ₃ encapsulated flexible free-standing nanofabric cathodes for fast charging and long life-cycle lithium-ion batteries. Nanoscale, 2016, 8, 7408-7415.	2.8	49
151	Dualâ€Functional NbN Ultrafine Nanocrystals Enabling Kinetically Boosted Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	49
152	A single wire as all-inclusive fully functional supercapacitor. Nano Energy, 2017, 32, 201-208.	8.2	48
153	Interface Engineering of Anchored Ultrathin TiO ₂ /MoS ₂ Heterolayers for Highly-Efficient Electrochemical Hydrogen Production. ACS Applied Materials & Interfaces, 2018, 10, 6084-6089.	4.0	47
154	Creation of Cadmium Sulfide Nanostructures Using AFM Dip-Pen Nanolithography. Journal of Physical Chemistry B, 2005, 109, 22337-22340.	1.2	45
155	Highly Efficient Oxygen Reduction Electrocatalysts based on Winged Carbon Nanotubes. Scientific Reports, 2013, 3, 3195.	1.6	45
156	Importance of Diameter Control on Selective Synthesis of Semiconducting Single-Walled Carbon Nanotubes. ACS Nano, 2014, 8, 8564-8572.	7.3	45
157	Organic solar cells using few-walled carbon nanotubes electrode controlled by the balance between sheet resistance and the transparency. Applied Physics Letters, 2009, 94, 123302.	1.5	44
158	Ultrahigh rate capability and ultralong cycling stability of sodium-ion batteries enabled by wrinkled black titania nanosheets with abundant oxygen vacancies. Nano Energy, 2018, 53, 91-96.	8.2	44
159	Synergy between thermal and nonthermal effects in plasmonic photocatalysis. Nano Research, 2020, 13, 1268-1280.	5.8	43
160	Rh/Al Nanoantenna Photothermal Catalyst for Wide-Spectrum Solar-Driven CO ₂ Methanation with Nearly 100% Selectivity. Nano Letters, 2021, 21, 8824-8830.	4.5	43
161	Do Inner Shells of Double-Walled Carbon Nanotubes Fluoresce?. Nano Letters, 2009, 9, 3282-3289.	4.5	42
162	Orthogonal Orientation Control of Carbon Nanotube Growth. Journal of the American Chemical Society, 2010, 132, 336-341.	6.6	42

#	Article	IF	CITATIONS
163	Bottom-up synthesis of nitrogen-doped porous carbon scaffolds for lithium and sodium storage. Nanoscale, 2017, 9, 1972-1977.	2.8	42
164	Mechanically Robust Gel Polymer Electrolyte for an Ultrastable Sodium Metal Battery. Small, 2020, 16, e1906208.	5.2	42
165	Fabrication of Small Diameter Few-Walled Carbon Nanotubes with Enhanced Field Emission Property. Journal of Nanoscience and Nanotechnology, 2006, 6, 1346-1349.	0.9	41
166	Sulfur-doped zinc oxide (ZnO) Nanostars: Synthesis and simulation of growth mechanism. Nano Research, 2012, 5, 20-26.	5.8	41
167	Diameter-Controlled Vaporâ^'Solid Epitaxial Growth and Properties of Aligned ZnO Nanowire Arrays. Journal of Physical Chemistry C, 2009, 113, 3950-3954.	1.5	40
168	Silver nanoparticle toxicity is related to coating materials and disruption of sodium concentration regulation. Nanotoxicology, 2016, 10, 1306-1317.	1.6	40
169	Developmental toxicity from exposure to various forms of mercury compounds in medaka fish (<i>Oryzias latipes</i>) embryos. PeerJ, 2016, 4, e2282.	0.9	40
170	Conversion between Hexagonal GaN and β-Ga2O3Nanowires and Their Electrical Transport Properties. Nano Letters, 2006, 6, 148-152.	4.5	39
171	Carbon Nanomaterials for Flexible Energy Storage. Materials Research Letters, 2013, 1, 175-192.	4.1	38
172	Three-dimensional spongy framework as superlyophilic, strongly absorbing, and electrocatalytic polysulfide reservoir layer for high-rate and long-cycling lithium-sulfur batteries. Nano Research, 2018, 11, 6436-6446.	5.8	38
173	Microwave Impedance Spectroscopy of Dense Carbon Nanotube Bundles. Nano Letters, 2008, 8, 152-156.	4.5	37
174	Scanning photovoltage microscopy of potential modulations in carbon nanotubes. Applied Physics Letters, 2007, 91, .	1.5	36
175	Pitaya-like microspheres derived from Prussian blue analogues as ultralong-life anodes for lithium storage. Journal of Materials Chemistry A, 2016, 4, 15041-15048.	5.2	35
176	Growth of aligned SWNT arrays from water-soluble molecular clusters for nanotube device fabrication. Physical Chemistry Chemical Physics, 2004, 6, 1077.	1.3	34
177	Integrated Single-Walled Carbon Nanotube/Microfluidic Devices for the Study of the Sensing Mechanism of Nanotube Sensors. Journal of Physical Chemistry B, 2005, 109, 13406-13408.	1.2	34
178	Theory of hot electrons: general discussion. Faraday Discussions, 2019, 214, 245-281.	1.6	34
179	Surface pinning and grain boundary formation in magnetic flux-line lattices ofBi2Sr2CaCu2O8+1 high-Tcsuperconductors. Physical Review Letters, 1994, 72, 748-751.	2.9	33
180	Role of catalysts in the surface synthesis of single-walled carbon nanotubes. Nano Research, 2009, 2, 593-598.	5.8	33

#	Article	IF	CITATIONS
181	Carbon Nanotubes with Small and Tunable Diameters from Poly(ferrocenylsilane)-block-polysiloxane Diblock Copolymers. Langmuir, 2006, 22, 5174-5179.	1.6	32
182	H ₂ Storage in Microporous Carbons from PEEK Precursors. Journal of Physical Chemistry C, 2010, 114, 13902-13908.	1.5	32
183	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environmental Science: Nano, 2020, 7, 13-36.	2.2	32
184	Dependence of the energy gap onTc: Absence of scaling in the copper oxide superconductors. Physical Review Letters, 1993, 70, 3494-3497.	2.9	31
185	Understanding and Manipulating Inorganic Materials with Scanning Probe Microscopes. Angewandte Chemie International Edition in English, 1996, 35, 686-704.	4.4	31
186	Direct observation of the strong interaction between carbon nanotubes and quartz substrate. Nano Research, 2009, 2, 903.	5.8	31
187	Water Adsorption in Nanoporous Carbon Characterized by in Situ NMR: Measurements of Pore Size and Pore Size Distribution. Journal of Physical Chemistry C, 2014, 118, 8474-8480.	1.5	31
188	Scalable Fabrication of Ambipolar Transistors and Radioâ€Frequency Circuits Using Aligned Carbon Nanotube Arrays. Advanced Materials, 2014, 26, 645-652.	11.1	30
189	Graphene based energy devices. Nanoscale, 2015, 7, 6881-2.	2.8	30
190	Effects of Light on Catalytic Activities and Lifetime of Plasmonic Au Catalysts in the CO Oxidation Reaction. ACS Catalysis, 2019, 9, 578-586.	5.5	30
191	High entropy spinel oxide for efficient electrochemical oxidation of ammonia. Nano Research, 2022, 15, 4785-4791.	5.8	30
192	Fabrication of Activated Carbon Fibers/Carbon Aerogels Composites by Gelation and Supercritical Drying in Isopropanol. Journal of Materials Research, 2003, 18, 2765-2773.	1.2	29
193	Effect of Tungsten on the Purification of Few-Walled Carbon Nanotubes Synthesized by Thermal Chemical Vapor Deposition Methods. Journal of Physical Chemistry C, 2007, 111, 131-133.	1.5	29
194	Direct Optical Imaging of Graphene In Vitro by Nonlinear Femtosecond Laser Spectral Reshaping. Nano Letters, 2012, 12, 5936-5940.	4.5	29
195	Effects of Ionic Surfactant Adsorption on Single-Walled Carbon Nanotube Thin Film Devices in Aqueous Solutions. Langmuir, 2005, 21, 1162-1165.	1.6	28
196	Two-Stage Growth of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 6158-6160.	1.5	28
197	The dependence of ZnO photoluminescence efficiency on excitation conditions and defect densities. Applied Physics Letters, 2013, 103, .	1.5	28
198	Metal nitride nanosheets enable highly efficient electrochemical oxidation of ammonia. Nano Energy, 2021, 80, 105528.	8.2	28

#	Article	IF	CITATIONS
199	Intrinsic features ofBi2Sr2CaCu2O8+δtunneling spectra: Scaling and symmetry of the energy gap. Physical Review B, 1994, 49, 6234-6238.	1.1	27
200	Viscous State Effect on the Activity of Fe Nanocatalysts. ACS Nano, 2010, 4, 6950-6956.	7.3	27
201	Aging of fullerene C60 nanoparticle suspensions in the presence of microbes. Water Research, 2014, 65, 282-289.	5.3	26
202	Effect of Direct Contact on the Phytotoxicity of Silver Nanomaterials. Environmental Science & Technology, 2016, 50, 10370-10376.	4.6	25
203	One-Step Vapor-Phase Synthesis and Quantum-Confined Exciton in Single-Crystal Platelets of Hybrid Halide Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 2363-2371.	2.1	25
204	Characterization of single wall carbon nanotubes by nonane preadsorption. Carbon, 2006, 44, 2039-2044.	5.4	23
205	A remotely driven and controlled micro-gripper fabricated from light-induced deformation smart material. Smart Materials and Structures, 2016, 25, 095009.	1.8	23
206	Generating Suspended Single-Walled Carbon Nanotubes Across a Large Surface Area via Patterning Self-Assembled Catalyst-Containing Block Copolymer Thin Films. Journal of Physical Chemistry B, 2006, 110, 10585-10589.	1.2	22
207	Photoluminescence from Inner Walls in Double-Walled Carbon Nanotubes: Some Do, Some Do Not. Nano Letters, 2011, 11, 4405-4410.	4.5	22
208	Carbon Nanotube Field-Effect Transistors for Use as Pass Transistors in Integrated Logic Gates and Full Subtractor Circuits. ACS Nano, 2012, 6, 4013-4019.	7.3	22
209	Highly Conductive Carbon Nanotube Matrix Accelerates Developmental Chloride Extrusion in Central Nervous System Neurons by Increased Expression of Chloride Transporter KCC2. Small, 2013, 9, 1066-1075.	5.2	22
210	Monolithic co-aerogels of carbon/titanium dioxide as three dimensional nanostructured electrodes for energy storage. Journal of Power Sources, 2012, 218, 140-147.	4.0	20
211	Aligned Single-Walled Carbon Nanotube Arrays from Rhodium Catalysts with Unexpected Diameter Uniformity Independent of the Catalyst Size and Growth Temperature. Chemistry of Materials, 2016, 28, 870-875.	3.2	20
212	Large-scale growth of millimeter-long single-crystalline ZnS nanobelts. Journal of Solid State Chemistry, 2008, 181, 3116-3120.	1.4	19
213	Synthesis of Copper Nanocatalysts with Tunable Size Using Diblock Copolymer Solution Micelles. Journal of Physical Chemistry C, 2010, 114, 5767-5772.	1.5	18
214	In vitro cytotoxicity of silver nanoparticles in primary rat hepatic stellate cells. Molecular Medicine Reports, 2013, 8, 1365-1372.	1.1	18
215	Understanding the Origin of Selective Reduction of CO2 to CO on Single-Atom Nickel Catalyst. Journal of Physical Chemistry B, 2020, 124, 511-518.	1.2	18
216	Gate-Free Electrical Breakdown of Metallic Pathways in Single-Walled Carbon Nanotube Crossbar Networks. Nano Letters, 2015, 15, 6058-6065.	4.5	16

#	Article	IF	CITATIONS
217	Studies of the chemical and pore structures of the carbon aerogels synthesized by gelation and supercritical drying in isopropanol. Journal of Applied Polymer Science, 2004, 91, 3060-3067.	1.3	15
218	Three Dimensional Single-Walled Carbon Nanotubes. Nano Letters, 2008, 8, 3325-3329.	4.5	15
219	Selective synthesis of large diameter, highly conductive and high density single-walled carbon nanotubes by a thiophene-assisted chemical vapor deposition method on transparent substrates. Nanoscale, 2016, 8, 14156-14162.	2.8	15
220	Partial Surface Oxidation of Manganese Oxides as an Effective Treatment To Improve Their Activity in Electrochemical Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2018, 122, 21366-21374.	1.5	15
221	Electrochemical Detection of Nitric Oxide in Biological Fluids. Methods in Enzymology, 2005, 396, 68-77.	0.4	14
222	Iron Nanoparticles Derived from Iron-Complexed Polymethylglutarimide To Produce High-Quality Lithographically Defined Single-Walled Carbon Nanotubes. Chemistry of Materials, 2005, 17, 2237-2240.	3.2	13
223	Physical and Electrical Properties of Chemical Vapor Grown GaN Nano/Microstructures. Inorganic Chemistry, 2008, 47, 10325-10329.	1.9	13
224	Purification of Semiconducting Carbon Nanotubes. Small, 2007, 3, 366-367.	5.2	12
225	Facile Gramâ€Scale Growth of Singleâ€Crystalline Nanotetrapodâ€Assembled ZnO Through a Rapid Process. European Journal of Inorganic Chemistry, 2008, 2008, 3172-3176.	1.0	11
226	Understanding the discrepancy between the quality and yield in the synthesis of carbon nanotubes. Nano Research, 2015, 8, 296-302.	5.8	10
227	Synergy of polypyrrole and carbon x-aerogel in lithium–oxygen batteries. Nanoscale, 2018, 10, 3753-3758.	2.8	10
228	Characterization of singleâ€walled carbon nanotubes synthesized using iron and cobalt nanoparticles derived from selfâ€assembled diblock copolymer micelles. Applied Organometallic Chemistry, 2010, 24, 569-572.	1.7	7
229	Novel synthetic methodology for controlling the orientation of zinc oxide nanowires grown on silicon oxide substrates. Nanoscale, 2014, 6, 3861.	2.8	7
230	How sulfidation of ZnO powders enhances visible fluorescence. Journal of Materials Chemistry C, 2017, 5, 10770-10776.	2.7	7
231	Correction to Highly Efficient Retention of Polysulfides in "Sea-Urchin―Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium–Sulfur Batteries. Nano Letters, 2018, 18, 1553-1553.	4.5	5
232	Effect of Multi-Walled Carbon Nanotubes and Conducting Polymer on Capacitance of Mesoporous Carbon Electrode. Journal of Nanoscience and Nanotechnology, 2014, 14, 7015-7021.	0.9	4
233	Graphoepitaxial effect in the guided growth of SWNT arrays on quartz. Journal of Materials Chemistry C, 2015, 3, 9678-9683.	2.7	4
234	Phytotoxicity of soluble graphitic nanofibers to model plant species. Environmental Toxicology and Chemistry, 2016, 35, 2941-2947.	2.2	4

#	Article	IF	CITATIONS
235	Diameter dependent doping in horizontally aligned high-density N-doped SWNT arrays. Nano Research, 2019, 12, 1845-1850.	5.8	4
236	Strongly trapping soluble lithium polysulfides using polar cysteamine groups for highly stable lithium sulfur batteries. Nanotechnology, 2020, 31, 485403.	1.3	4
237	Graphene oxide as a dual-function conductive binder for PEEK-derived microporous carbons in high performance supercapacitors. 2D Materials, 2015, 2, 024006.	2.0	3
238	Effect of interlayer spacing on sodium ion insertion in nanostructured titanium hydrogeno phosphates/carbon nanotube composites. RSC Advances, 2016, 6, 60015-60021.	1.7	3
239	A Superior Flameâ€Resistant and Wideâ€Temperature Adaptable Yarn Lithiumâ€Ion Battery with a Highly Conductive Ionogel Electrolyte. ChemElectroChem, 2020, 7, 3998-4002.	1.7	3
240	Carrier dynamics and photoexcited emission efficiency of ZnO:Zn phosphor powders. Proceedings of SPIE, 2009, , .	0.8	2
241	Probing complex low-dimensional solids with scanning probe microscopes: From charge density waves to high-temperature superconductivity. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 1064.	1.6	1
242	Nanostructured Materials for a Sustainable Future. Small, 2015, 11, 3204-3205.	5.2	1
243	Electron tunneling microscopy: a direct probe of metal substitution in BiSrCaCuO superconductors. Inorganica Chimica Acta, 1996, 243, 305-308.	1.2	0
244	Preparation of Tungsten Bronze Nanowires. Materials Research Society Symposia Proceedings, 2003, 789, 246.	0.1	0
245	Chemical Vapor Depositions of Single Walled Carbon Nanotube thin films and their applications for sensors in aqueous solutions. Materials Research Society Symposia Proceedings, 2004, 828, 221.	0.1	0
246	Direct Growth of Single Walled Carbon Nanotubes on Flat Substrates for Nanoscale Electronic Applications. Nanoscience and Technology, 2005, , 113-132.	1.5	0