
Zhong-Gang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7396616/publications.pdf Version: 2024-02-01

ZHONG-GANG WANG

#	Article	IF	CITATIONS
1	Tuning the luminescence lifetimes of ruthenium(ii) polypyridine complexes and its application in luminescent oxygen sensing. Journal of Materials Chemistry, 2010, 20, 1953.	6.7	182
2	Microporous Polyimides with Uniform Pores for Adsorption and Separation of CO ₂ Gas and Organic Vapors. Macromolecules, 2013, 46, 3058-3066.	2.2	181
3	Microporous polyimide networks with large surface areas and their hydrogen storage properties. Chemical Communications, 2010, 46, 7730.	2.2	125
4	Liquid acid-catalysed fabrication of nanoporous 1,3,5-triazine frameworks with efficient and selective CO2 uptake. Polymer Chemistry, 2014, 5, 3424.	1.9	112
5	Tetraphenyladamantane-Based Polyaminals for Highly Efficient Captures of CO ₂ and Organic Vapors. Macromolecules, 2014, 47, 6664-6670.	2.2	112
6	Microporous Cyanate Resins: Synthesis, Porous Structure, and Correlations with Gas and Vapor Adsorptions. Macromolecules, 2012, 45, 5140-5150.	2.2	98
7	Facile Synthesis of Fluorinated Microporous Polyaminals for Adsorption of Carbon Dioxide and Selectivities over Nitrogen and Methane. Macromolecules, 2016, 49, 2575-2581.	2.2	90
8	A rational construction of microporous imide-bridged covalent–organic polytriazines for high-enthalpy small gas absorption. Journal of Materials Chemistry A, 2015, 3, 878-885.	5.2	81
9	Creation of Carbazole-Based Fluorescent Porous Polymers for Recognition and Detection of Various Pesticides in Water. ACS Sensors, 2020, 5, 162-170.	4.0	79
10	Tetraphenyladamantane-based microporous polyimide for adsorption of carbon dioxide, hydrogen, organic and water vapors. Chemical Communications, 2013, 49, 3321.	2.2	71
11	Facile preparation of porous polybenzimidazole networks and adsorption behavior of CO ₂ gas, organic and water vapors. Polymer Chemistry, 2013, 4, 961-968.	1.9	67
12	Micro- and mesoporous poly(Schiff-base)s constructed from different building blocks and their adsorption behaviors towards organic vapors and CO ₂ gas. Journal of Materials Chemistry A, 2014, 2, 18881-18888.	5.2	66
13	Synthetic control of network topology and pore structure in microporous polyimides based on triangular triphenylbenzene and triphenylamine units. Soft Matter, 2011, 7, 5723.	1.2	65
14	The directing effect of linking units on building microporous architecture in tetraphenyladmantane-based poly(Schiff base) networks. Chemical Communications, 2014, 50, 1897.	2.2	63
15	The cost-effective synthesis of furan- and thienyl-based microporous polyaminals for adsorption of gases and organic vapors. Chemical Communications, 2016, 52, 1143-1146.	2.2	62
16	Highly Selective Separation of CO ₂ , CH ₄ , and C ₂ –C ₄ Hydrocarbons in Ultramicroporous Semicycloaliphatic Polyimides. ACS Applied Materials & Interfaces, 2018, 10, 26618-26627.	4.0	62
17	Microporous polyimides with functional groups for the adsorption of carbon dioxide and organic vapors. Journal of Materials Chemistry A, 2016, 4, 11453-11461.	5.2	61
18	Naphthalene-Based Microporous Polyimides: Adsorption Behavior of CO ₂ and Toxic Organic Vapors and Their Separation from Other Gases. Journal of Physical Chemistry C, 2013, 117, 24428-24437.	1.5	59

ZHONG-GANG WANG

#	Article	IF	CITATIONS
19	Tetraphenyladamantane-Based Microporous Polyimide and Its Nitro-Functionalization for Highly Efficient CO ₂ Capture. Journal of Physical Chemistry C, 2014, 118, 17585-17593.	1.5	57
20	Synthesis of Fluorescent Micro- and Mesoporous Polyaminals for Detection of Toxic Pesticides. Macromolecules, 2018, 51, 1769-1776.	2.2	57
21	Synthesis of 1,3,5,7-tetrakis(4-cyanatophenyl)adamantane and its microporous polycyanurate network for adsorption of organic vapors, hydrogen and carbon dioxide. Chemical Communications, 2014, 50, 11238.	2.2	52
22	Synthesis and properties of a series of cyanate resins based on phenolphthalein and its derivatives. Polymer, 2009, 50, 817-824.	1.8	49
23	Phthalazinone structure-based covalent triazine frameworks and their gas adsorption and separation properties. RSC Advances, 2016, 6, 12009-12020.	1.7	49
24	Building ultramicropores within organic polymers based on a thermosetting cyanate ester resin. Chemical Communications, 2009, , 5027.	2.2	45
25	Microporous Thermosetting Film Constructed from Hyperbranched Polyarylate Precursors Containing Rigid Tetrahedral Core: Synthesis, Characterization, and Properties. Chemistry of Materials, 2010, 22, 2780-2789.	3.2	44
26	Triptycene-Based Microporous Cyanate Resins for Adsorption/Separations of Benzene/Cyclohexane and Carbon Dioxide Gas. ACS Applied Materials & Interfaces, 2017, 9, 41618-41627.	4.0	42
27	Micro- and Ultramicroporous Polyaminals for Highly Efficient Adsorption/Separation of C ₁ –C ₃ Hydrocarbons and CO ₂ in Natural Gas. ACS Applied Materials & Interfaces, 2020, 12, 24488-24497.	4.0	40
28	Pyrene-cored dendrimer with carbazole derivatives as dendrons: synthesis, properties and application in white light-emitting diode. Physical Chemistry Chemical Physics, 2011, 13, 17825.	1.3	37
29	Carboxyl-, Hydroxyl-, and Nitro-Functionalized Porous Polyaminals for Highly Selective CO ₂ Capture. ACS Applied Polymer Materials, 2019, 1, 1524-1531.	2.0	37
30	Monodispersed ultramicroporous semi-cycloaliphatic polyimides for the highly efficient adsorption of CO ₂ , H ₂ and organic vapors. Polymer Chemistry, 2016, 7, 7295-7303.	1.9	36
31	Synthetic modulation of micro- and mesopores in polycyanurate networks for adsorptions of gases and organic hydrocarbons. Polymer Chemistry, 2017, 8, 1074-1083.	1.9	35
32	Cost-effective preparation of microporous polymers from formamide derivatives and adsorption of CO ₂ under dry and humid conditions. Polymer Chemistry, 2019, 10, 3371-3379.	1.9	35
33	Silicon ontaining Cycloaliphatic Epoxy Resins with Systematically Varied Functionalities: Synthesis and Structure/Property Relationships. Macromolecular Chemistry and Physics, 2011, 212, 926-936.	1.1	33
34	Microporous Poly(Schiff Base) Constructed from Tetraphenyladamantane Units for Adsorption of Gases and Organic Vapors. Macromolecular Rapid Communications, 2014, 35, 971-975.	2.0	33
35	Tetraphenyladamantane-Based Microporous Polybenzimidazoles for Adsorption of Carbon Dioxide, Hydrogen, and Organic Vapors. Journal of Physical Chemistry C, 2015, 119, 13080-13087.	1.5	32
36	Highly Selective Adsorption for Ethylene, Propylene, and Carbon Dioxide in Silver-Ionized Microporous Polyimide. Journal of Physical Chemistry C, 2019, 123, 575-583.	1.5	29

ZHONG-GANG WANG

#	Article	IF	CITATIONS
37	Pillar[5]arene-Derived Microporous Polyaminal Networks with Enhanced Uptake Performance for CO ₂ and lodine. Industrial & Engineering Chemistry Research, 2020, 59, 3269-3278.	1.8	29
38	Micro―and Mesoporous Polycyanurate Networks Based on Triangular Units. ChemPlusChem, 2013, 78, 498-505.	1.3	27
39	Synthesis and properties of two novel siliconâ€containing cycloaliphatic epoxy resins for electronic packaging application. Polymers for Advanced Technologies, 2012, 23, 367-374.	1.6	26
40	Hierarchical Porous Phenolic Resin and Its Supported Pd atalyst for Suzuki–Miyaura Reactions in Water Medium. Macromolecular Rapid Communications, 2018, 39, 1700618.	2.0	26
41	Tetraphenylsilane-Cored Star-Shaped Polymer Micelles with pH/Redox Dual Response and Active Targeting Function for Drug-Controlled Release. Biomacromolecules, 2019, 20, 4602-4610.	2.6	26
42	Curing of diglycidyl ether of bisphenolâ€A epoxy resin using a poly(aryl ether ketone) bearing pendant carboxyl groups as macromolecular curing agent. Polymer International, 2009, 58, 912-918.	1.6	24
43	Synthesis and fluorescence properties of novel 1,10â€phenanthrolineâ€functionalized polyaryletherketone and its rare earth complexes. Polymer International, 2010, 59, 937-944.	1.6	22
44	Highly Nitrogen-Rich Microporous Polyaminals Using <i>N</i> , <i>N</i> -Dimethylformamide and Formamide as the Starting Monomers for CO ₂ Adsorption and Separation. Journal of Physical Chemistry C, 2020, 124, 3087-3094.	1.5	22
45	Micro-/Mesoporous Fluorescent Polymers and Devices for Visual Pesticide Detection with Portability, High Sensitivity, and Ultrafast Response. ACS Applied Materials & Interfaces, 2022, 14, 5815-5824.	4.0	22
46	Starburst dendrimers consisting of triphenylamine core and 9-phenylcarbazole-based dendrons: synthesis and properties. Organic and Biomolecular Chemistry, 2012, 10, 9481.	1.5	21
47	Microporous Polybenzoxazoles with Tunable Porosity and Heteroatom Concentration for Dynamic Adsorption/Separation of CO ₂ Mixed Gases. Journal of Physical Chemistry C, 2018, 122, 12831-12838.	1.5	21
48	Fabrication of Superhydrophobic and Luminescent Rare Earth/Polymer complex Films. Scientific Reports, 2016, 6, 24682.	1.6	18
49	Synthesis and degradable properties of cycloaliphatic epoxy resin from renewable biomass-based furfural. RSC Advances, 2015, 5, 95126-95132.	1.7	17
50	A novel 3D Zn-coordination polymer based on a multiresponsive fluorescent sensor demonstrating outstanding sensitivities and selectivities for the efficient detection of multiple analytes. Dalton Transactions, 2021, 50, 15176-15186.	1.6	17
51	Structural effects of microporous polymers on adsorption/separation of C1–C3 light hydrocarbons and CO2 in natural gas. Chemical Engineering Journal, 2022, 427, 131985.	6.6	17
52	Ultramicroporous Carbons Derived from Semi-Cycloaliphatic Polyimide with Outstanding Adsorption Properties for H ₂ , CO ₂ , and Organic Vapors. Journal of Physical Chemistry C, 2017, 121, 22753-22761.	1.5	17
53	Porphyrin-Based Nanoporous Organic Polymers for Adsorption of Carbon Dioxide, Ethane, and Methane. ACS Applied Nano Materials, 2021, 4, 10565-10574.	2.4	16
54	Heat-Resistant Crack-Free Superhydrophobic Polydivinylbenzene Colloidal Films. Langmuir, 2016, 32, 3079-3084.	1.6	14

#	Article	IF	CITATIONS
55	Self-Segregation Behavior of <i>N</i> -Ethyl-pentadecafluorooctanamide-Terminated Polybutylene Isophthalate and Its Effects on Film Morphology and Wettability. Journal of Physical Chemistry B, 2009, 113, 15204-15211.	1.2	11
56	Synthesis and Characterization of Waterborne Fluoropolymers Prepared by the One-Step Semi-Continuous Emulsion Polymerization of Chlorotrifluoroethylene, Vinyl Acetate, Butyl Acrylate, Veova 10 and Acrylic Acid. Molecules, 2017, 22, 184.	1.7	11
57	Fluorine-Functionalized Nanoporous Polymers for Selective Adsorption/Separation of Ethylene, C ₁ –C ₃ Alkanes, and CO ₂ . ACS Applied Nano Materials, 2021, 4, 14060-14068.	2.4	11
58	Copolymer networks from carboxylâ€containing polyaryletherketone and diglycidyl ether of bisphenolâ€A: Preparation and properties. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 2424-2431.	2.4	10
59	Highly efficient separation of ethylene/ethane in microenvironment-modulated microporous polymers. Separation and Purification Technology, 2022, 287, 120580.	3.9	10
60	Covalent triazine frameworks for the dynamic adsorption/separation of benzene/cyclohexane mixtures. New Journal of Chemistry, 2022, 46, 7580-7587.	1.4	10
61	Synthesis of bis(2,3â€epoxycyclohexyl) and its cationic photopolymerization in the presence of different diols. Polymer International, 2009, 58, 74-80.	1.6	9
62	Tetraphenylsilane ored Star‣haped Amphiphilic Block Copolymers for pHâ€Responsive Anticancer Drug Delivery. Macromolecular Chemistry and Physics, 2019, 220, 1900248.	1.1	8
63	Facile synthesis of hydroxyl- and amine-riched porous polymer for indium recovery in water. Microporous and Mesoporous Materials, 2021, 323, 111162.	2.2	8
64	Dendrimers with tetraphenylsilane core and 9-phenylcarbazole-based dendrons: synthesis, photophysics, and electrochemical behavior. RSC Advances, 2012, 2, 9488.	1.7	7
65	Fluorinated star-shaped block copolymers: Synthesis and optical properties. Journal of Polymer Science Part A, 2016, 54, 1969-1977.	2.5	6
66	Synthesis and fluorescence properties of dysprosiumâ€coordinated with highâ€T _g polyaryletherketones containing carboxyl side groups. Polymers for Advanced Technologies, 2011, 22, 488-494.	1.6	5
67	Thermal and dielectric properties of nanocomposites prepared from reactive graphene oxide and siliconâ€containing cycloaliphatic diepoxide. Polymer Composites, 2020, 41, 871-878.	2.3	5
68	Synthesis of a Magnetic Co@C Material via the Design of a MOF Precursor for Efficient and Selective Adsorption of Water Pollutants. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 700-712.	1.9	5
69	Construction of Hierarchical Porous Polycyanurate Networks with Cobaltoporphyrin for CO ₂ Adsorption and Efficient Conversion to Cyclic Di- and Tri-Carbonates. Macromolecules, 2022, 55, 4832-4840.	2.2	5
70	Comparative study of siliconâ€containing cycloaliphatic epoxides between different chemical structures and curing mechanisms for potential lightâ€emitting diode encapsulation applications. Polymer International, 2013, 62, 512-522.	1.6	4